Handling
System information

gesis system

- The principle of any electrical installation is: power must be supplied by a public power supply, a transformer or a generator, it must be distributed within the building and transferred to the electrical consumer devices. This system not only requires power lines, but also connections, connection elements and distribution devices.

- With *gesis*, Wieland offers a complete connector system. It enables you to implement complex electrical installation systems with only a few components. By using *gesis* you can complete 2 to 6 pole installation systems to power lighting fixtures, outlets and other consumer devices. Signal lines and even EIB bus lines are laid out in the same easy way. The consistency of the *gesis* solution is demonstrated by the fact that even pluggable EIB switching devices belong to the *gesis* range.

- Due to its compact design *gesis* can be used in all areas of electrical installation. Many manufacturers have already equipped their components with pluggable connectors, which are simple to install and do not require costly and time-consuming wiring.

- All *gesis* elements are pre-assembled and simply have to be plugged together. The electrical installation systems and even signal and bus systems can therefore be implemented in a pluggable design leading from the junction box to the consumer devices. The system is time and cost-effective and guarantees security, as mismating is impossible.

- This brochure will introduce the *gesis* system to you. Once you are familiar with this introduction, you will be able to install all *gesis* connections on your own. For your personal safety please carefully follow all instructions and warning notes of this catalog.

- Have fun with *gesis*. In case of any further questions on *gesis*, please contact our support under:

 Phone +49 (951) 9324-996 or
 www.gesis.com
gesis safety

- **gesis** meets all the requirements of standard DIN VDE 0628 and starting in the 4th quarter of 2005 also new standard DIN VDE 0606 T200.

- **gesis** is designed to prevent all typical error sources within electrical installations from the onset:

No “mismating”

- In practice, mismating can easily cause failure of a complete installation system. Mismating is impossible with our pre-assembled **gesis** components.

- All connectors are mechanically coded meaning that only the matching male and female connectors can be plugged together, in the correct pole configuration. You can therefore be sure that corrective action rewiring caused by wrong connections will not be required.

<table>
<thead>
<tr>
<th>Application</th>
<th>Coding</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female connector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mains with ground</td>
<td>Code 1</td>
<td>black white</td>
</tr>
<tr>
<td>Code 2</td>
<td></td>
<td>dark gray</td>
</tr>
<tr>
<td>Code 3</td>
<td></td>
<td>light red</td>
</tr>
<tr>
<td>Switching applications</td>
<td>Code 4</td>
<td>brown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Male connector</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Code 1</td>
<td></td>
</tr>
<tr>
<td>Code 2</td>
<td></td>
</tr>
<tr>
<td>Code 3</td>
<td></td>
</tr>
<tr>
<td>Code 4</td>
<td></td>
</tr>
</tbody>
</table>

The connector colors help you to find the matching connections, as the female and male connector mates have the same color.
System information

Safe connections

- **gesis**-components meet all the requirements of standard DIN VDE 0628/DIN VDE 0606 T200, meaning that any unintentional disconnect of the connections is impossible. Locking devices make sure that all **gesis** connectors are protected against disconnect after installation and connection. The contact is maintained even when the pull-out forces are increased.

Touch-safe

- Electrical installations always require careful handling. **gesis** guards against any dangers caused by live wires and open cables. All current-carrying contacts are enclosed by the housing and cannot be touched under normal handling conditions (except for the cables with connector and open end!).

Leading ground conductor

- A leading ground conductor in the **gesis** connections provides safety in all power lines. It is connected and disconnected first making it possible that these connections can be connected and disconnected under load as per VDE 0625.

- Many **gesis** components are equipped with integrated locking devices which audibly latch when the connectors are plugged together. Some variants require manual locking. In section “Assembly” on page 348 you will find all relevant details.
Supply/connection on site

- The system provides 2 to 6 pole connectors for initial installations which can be assembled on site as required. **Only electricians are allowed to terminate the female and male connectors to the cables.**

Distribution

- Power and signals are distributed through pre-assembled blocks with one input and several outputs in 2, 3, 4 and 5 pole configurations. A system distribution device with a 5 pole input and a 3 pole output is available specifically for the distribution of three-phase power systems to up to three alternating power lines.

Wiring

- To connect various consumer devices such as lighting fixtures, outlets and fans, 2 to 6 pole cables preassembled with female and male connectors are used.
Connection

gesis connections are state-of-the-art in many function elements. Original hard wired devices can be easily modified with female and male connectors, creating a flexible, pluggable device. **Later installations of that kind must only be performed by qualified electricians.**

The system components for networks are designed for conductor cross sections up to 2.5 mm². We supply cables in various lengths for economic modifications of this type of material consumption.

Assembly

As with all electrical components, proper procedure stipulates that any actions which might require contact with live parts must be performed by a qualified electrician. Please therefore be warned that initial installations and terminations of female and male connectors to cables must be performed by electricians. Also, all *gesis* flat cable adapters must be installed by qualified electricians. Installations and later modifications to them must be completed by a qualified electrician.

Do not modify any connectors or cables! Lay-out and connection of bus and power lines and switching devices must be completed in accordance with the appropriate national regulations. Relevant standards and procedures for security and prevention of accidents must be followed.
Assembly

- As with all electrical components, proper procedure stipulates that any actions which might require contact with live parts must be performed by a qualified electrician. Please therefore be warned that initial installations and terminations of female and male connectors to cables must be performed by electricians. Also, all gesis flat cable adapters must be installed by qualified electricians.

- Installations and later modifications to them must be completed by a qualified electrician.
- Do not modify any connectors or cables!
- Lay-out and connection of bus and power lines and switching devices must be completed in accordance with the appropriate national regulations.
- Relevant standards and procedures for security and prevention of accidents must be followed.
What to consider

- After reading the introduction to our *gesis* system, you can implement all *gesis* connections on your own.

- **Do not use any components from other manufacturers!**

- Never disconnect *gesis* connectors by force. The locking device must be opened with a screwdriver. The connections can then be separated easily. Notes on how to disconnect the various connection types are provided on the following page.

- Please check the outputs of the EIB modules and make sure that the male connectors have the same color as the female connectors which are integrated in the EIB modules.

- The connectors are mechanically coded to prevent mismating. Mains connectors in black, white and coral red have the same coding (code 1) and can therefore be plugged together. Connectors of other colors can only be plugged together with *gesis* components of the same colors.

- EIB module supply is always indicated by a gray housing with matching 5 pole black and white connectors.

- All connections must be locked according to regulation DIN VDE 0628 or DIN VDE 0606 T200 in order to guarantee permanent and proper function. The locking devices must audibly latch when the two halves are connected. All Wieland connectors are supplied with integrated locking devices. The locking devices are also available as accessories.

- The following configurations require manual locking:
 - All cable-to-cable couplings.
 - Male and female connectors which are terminated to cable ends. If you want to connect two cables via male/female connectors, you will have to fix a locking device to one of the connectors before connecting the parts. (see the picture at right).
 - Connections with flat cable adapters.
 - EIB modules, if you want to supply without distribution device. In this case, you will have to fix a locking device to the female connector which is connected to the power supply of the EIB module.

- NOTE: If you find a distribution module connector without a locking device, please inform your supplier.

- Always configure the line to prevent mechanical damage to the connector and the cables.
What to consider

The following configurations require manual locking:

- All cable-to-cable couplings.
 Male and female connectors which are terminated to cable ends. If you want to connect two cables via male/female connectors, you will have to fix a locking device to one of the connectors before connecting the parts.
 (see the picture at right).

Connections with flat cable adapters.

EIB modules, if you want to supply without distribution device. In this case, you will have to fix a locking device to the female connector which is connected to the power supply of the EIB module.

- NOTE:
 If you find a distribution module connector without a locking device, please inform your supplier.

- Always configure the line to prevent mechanical damage to the connector and the cables.
How to disconnect EIB devices and connectors

Unlatching connector and distribution block

Unlatching a distribution block of *gesis* EIB M2 switching devices and disconnecting all connectors

Unlatching supply connectors of *gesis* EIB V switching devices

Unlatching a distribution block of *gesis* EIB M2 switching devices (without disconnecting the connection with following *gesis* EIB M2 modules)

Unlatching a single supply connector of *gesis* EIB M2 switching devices

Unlatching output connectors of *gesis* EIB switching devices
How to disconnect EIB devices and connectors

Technical data

Rated voltage: 250 V–, 250/400 V–

Rated current:
- 16 A
- 20 A on request

Number of poles: 3 pole (L, N, E) to 5 pole
- L1, L2, L3, N, PE

Regulations:
- DIN VDE 0628 for all types
- DIN VDE 0606 T200
- VDE 0625, DIN EN 60320:
 - IEC 60320 3 pole latch components, pre-assembled 1.5 mm² cables

Approvals:
- DIN VDE 0628; DIN EN 60320 / VDE 0625, if applicable VDE, KEMA, BBJ, SKTC, UL, CSA, LR, GL, DNV, CCC pending.

Type of protection: IP 20, DIN VDE 0470
- section 1/11.92

Cable:
- H05VV-F, 505Z1Z1/F*
 - Sheathed cable with fine-stranded wires according to DIN VDE 0250 and VDE 0281 Part 402

Cable cross section:
- 1.5 mm² and 2.5 mm²

Cable diameter:
- 3 x 1.5 mm² = 8.3 mm
- 3 x 2.5 mm² = 10.2 mm
- 4 x 1.5 mm² = 9.2 mm
- 5 x 2.5 mm² = 12.3 mm

Cable with free end:
- 3 pole conductors with ultrasonically welded conductor ends (equivalent to a solid conductor)
- Diameter: 1.5 mm² 1.6 mm
 - conductor ends of 5 pole cables have ferrules,
- Dimensions approx 2.3 x 2.8 mm
- Diameter: 2.5 mm² ≥ 2.1 mm

Wire range:
- Screw version: 0.5 – 2.5 mm² solid and fine-stranded e.g. NYM
- Terminal screws M3 connecting torque 0.5 – 0.7 Nm
- Crimp version: 0.75 – 2.5 mm² (fine-stranded)
- Pre-assembled cables only
- Spring loaded: 0.5 – 2.5 mm² solid
- 0.5 – 1.5 mm² fine-stranded with ferrules
- Ground connection (plugable connector)
- Length of the ground loop: 8 mm

Mating cycles:
- Mating and disconnect under full load according to VDE 0625 approx. 50 – 100 connections with 16 A (resistive load)

Strain relief:
- Integrated into housing

Volume resistance:
- 0.8 mΩ (approximate value per male and female connection) corresponds to
- of 1.5 mm² approx. 10 cm

Rated impulse voltage:
- 4 kV for 250 V and 250/400 V
 - (with pollution degree 2)

Materials:
- Insulation – thermo plastic material
- Contact parts – brass, surface-plated
- Screws – galvanized chrome steel

Continuous:
- Cable: 70 °C, 90 °C
- Insulating components: 100 °C

Environmental conditions:
- Pollution degree 2 according to DIN VDE 0110 section 1
- Definition: There are only non-electroconductive dust particles present.
- They may occasionally become electroconductive for short periods due to moisture condensation.
- Example: Rooms in houses, shops and other commercial properties.

Fire load:
- Interconnecting cable:
 - 5 x 2.5 mm² = 0.40 kWh + 0.8 kWh/m
 - 3 x 2.5 mm² = 0.15 kWh + 0.5 kWh/m
 - 3 x 1.5 mm² = 0.16 kWh + 0.4 kWh/m

Supply connection cables to loads:
- 5 x 2.5 mm² = 0.20 kWh + 0.9 kWh/m
- 3 x 2.5 mm² = 0.07 kWh + 0.5 kWh/m
- 3 x 1.5 mm² = 0.08 kWh + 0.4 kWh/m
 - Distribution panel GST 18i3 V3 P1 = 0.13 kWh
 - Distribution panel GST 18i5 V3 P1 = 0.20 kWh
 - Initial connection, outgoing supply plug:
 - 3 pole = 0.11 kWh
 - 4 pole = 0.16 kWh
 - 5 pole = 0.20 kWh
 - 3 pole latch component = 0.06 kWh

Coding:
- Mechanical coding, identified by color.
- Black and white have the same coding.
- All components are available in these colors.

VDE Regulations:

VDE 0606:
- Part 200 being prepared to replace DIN VDE 0628
- Title:
 - Installation connector for permanent connection in fixed installations

VDE 0625:
- (EN 60320, IEC 60320)
- Title:
 - Appliance couplers for domestic and similar use

DIN VDE 0628:
- National regulation
- Installation connectors up to 400 V with a nominal current of 16 A

Note:
- Mating and disconnect is possible under load in accordance with DIN VDE 0625.
- Contacts safeguarded against tensile load on the cable. All components are interlockable.
- A locking device must be provided to comply with certification according to DIN VDE 0628.
Shock protection generally guaranteed even when disconnected.

- Protective conductor is the leading contact in three-phase current: PE before N before L
- Connection to the live cable must be with a female connector according to the regulations. It is therefore not possible to have a ring circuit.
- Can only be connected in the current phase sequence;
- 1 pole cannot be connected
- Locking device according to DIN VDE 0628 and DIN VDE 0606 T200.

Note:

- No dangerous mismating with systems in accordance with IEC 60309, IEC 60320, IEC 60906 and with national connector and outlet systems;
- Compliance with the standards does not guarantee that the connectors are interchangeable with installation connector systems from other manufacturers.
 Installation connector systems do not replace connector/outlet systems for home applications.

* The cable colors have been adapted to the new European standard HD 208 S2.
The assignment corresponds to international regulations.
Wieland has implemented these new assignments.
During the transition period we may deliver a mixture of old and new parts.
Technical data

<table>
<thead>
<tr>
<th>Rating/ Specification</th>
<th>Mains</th>
<th>EIB bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage:</td>
<td>250 V/400 V</td>
<td>50 V</td>
</tr>
<tr>
<td>Rated current:</td>
<td>16 A</td>
<td>3 A</td>
</tr>
<tr>
<td>Number of poles:</td>
<td>3 pole (L, N, PE)</td>
<td>2 pole (+, −)</td>
</tr>
<tr>
<td></td>
<td>5 pole (L1, L2, L3, N, PE)</td>
<td>3 pole (on request)</td>
</tr>
<tr>
<td>Regulations:</td>
<td>VDE 0628</td>
<td>Based draft IEC 61535</td>
</tr>
<tr>
<td></td>
<td>VDE 0606 T200</td>
<td>EIB manual</td>
</tr>
<tr>
<td>Approvals:</td>
<td>DIN VDE 0628 in preparation</td>
<td>EIB manual</td>
</tr>
<tr>
<td>Type of protection:</td>
<td>IP 20, DIN VDE 0470 section 1/11.92</td>
<td></td>
</tr>
</tbody>
</table>

Cable:
- Twin connection for mains and bus, type LYY...
- Mains similar to H05VV, Bus 1 x 2 x 0.8 PIMF, similar to I (Y) STY
- Similar to I (Y) STY 2 x 2 x 0.8 according to EIB guidelines

<table>
<thead>
<tr>
<th>Cable cross section</th>
<th>1.5/2.5 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable diameter:</td>
<td>Twin cable</td>
</tr>
<tr>
<td></td>
<td>2 x 2.5 mm² = 6 mm</td>
</tr>
<tr>
<td></td>
<td>6 mm; total width: 14.8 mm</td>
</tr>
<tr>
<td></td>
<td>6 mm; total width: 18.8 mm</td>
</tr>
<tr>
<td></td>
<td>3 x 1.5 mm² = 8.3 mm</td>
</tr>
<tr>
<td></td>
<td>5 x 2.5 mm² = 12.3 mm</td>
</tr>
<tr>
<td>Cable with free end</td>
<td>Ferrules: 8 mm</td>
</tr>
<tr>
<td></td>
<td>Insulation strip length: 8 mm</td>
</tr>
<tr>
<td>Strain relief:</td>
<td>Screw version: 0.5 – 2.5 mm²</td>
</tr>
<tr>
<td></td>
<td>Solid/fine-stranded</td>
</tr>
<tr>
<td></td>
<td>Spring loaded: 0.25 – 0.75 mm²</td>
</tr>
<tr>
<td>Volume resistance:</td>
<td>approx. 0.8 mΩ</td>
</tr>
<tr>
<td></td>
<td>approx. 5 mΩ</td>
</tr>
</tbody>
</table>

Rated impulse voltage:	Pollution degree 2
	4 kV for 250 V and 250/400 V
	4 kV for mains, 0.8 kV for bus

Materials:
- Insulation components – thermoplastic material, halogen-free
- Contact parts: brass, surface-plated; tin bronze, surface-plated

Continuous temperature:
- Cable: 70 °C, Insulation components: 100 °C

Flammability load:
- Extension cable
 - Twin cable 5 x 2.5 mm² + 1 x 2 x 0.8 = 0.50 kWh +1.52 kWh/m
 - Twin cable 3 x 1.5 mm² + 1 x 2 x 0.8 = 0.34 kWh +0.83 kWh/m
 - EIB bus cable 2 x 2 x 0.8 = 0.24 kWh +0.16 kWh/m
- Connection cable
 - Twin cable 5 x 2.5 mm² + 1 x 2 x 0.8 = 0.25 kWh +1.52 kWh/m
 - Twin cable 3 x 1.5 mm² + 1 x 2 x 0.8 = 0.17 kWh +0.83 kWh/m
 - EIB bus cable 2 x 2 x 0.8 = 0.12 kWh +0.15 kWh/m
- Connector
 - EST 2 i3 = 0.17 kWh
 - EST 2 i5 = 0.25 kWh
 - BST 14 i2 = 0.12 kWh

<table>
<thead>
<tr>
<th>Coding:</th>
<th>Mains connectors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST 18 i ..., coding color: black or white</td>
<td></td>
</tr>
<tr>
<td>Bus connector:</td>
<td></td>
</tr>
<tr>
<td>Coding according to EIB regulations (Color: green)</td>
<td></td>
</tr>
<tr>
<td>Coding dimming: (Color: pastel blue)</td>
<td></td>
</tr>
</tbody>
</table>

Note:
Connectors (bus signal) must be used only in combination with a SELV or PELV power supply unit.

The live component must be a female connector according to regulations. It is not possible to install cable in a ring circuit. In principle, not interchangeable with other connector systems available on the market. Mechanical coding only possible using the correct phase sequence. Protection against electric shock is guaranteed even when disconnected. EIB coding can be visually identified by green coloring. All the components can be locked together.
Technical data

<table>
<thead>
<tr>
<th></th>
<th>Mains</th>
<th>Control signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage:</td>
<td>250 V/400 V</td>
<td>50 V</td>
</tr>
<tr>
<td>Rated current:</td>
<td>16 A</td>
<td>3 A</td>
</tr>
<tr>
<td>Number of poles:</td>
<td>3 pole (L, N, PE)</td>
<td>3 pole</td>
</tr>
<tr>
<td>Regulations:</td>
<td>DIN VDE 0628 EN VDE 0627</td>
<td>DIN VDE 0628 EN VDE 0627</td>
</tr>
<tr>
<td>Approvals:</td>
<td>DIN VDE 0628</td>
<td>DIN VDE 0627</td>
</tr>
<tr>
<td>Type of protection:</td>
<td>IP 20, DIN VDE 0470 section 1/11.92</td>
<td></td>
</tr>
<tr>
<td>Cable:</td>
<td>Combination cable for mains and bus, type LiYY ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mains: similar H05VV, bus 1 x 2 x 0.8, PIMF, similar I(Y)STY control cable; I(Y)STY 2 x 2 x 0.8</td>
<td></td>
</tr>
<tr>
<td>Cable-cross section:</td>
<td>1.5/2.5 mm²</td>
<td>0.5 mm²</td>
</tr>
<tr>
<td>Cable-diameter:</td>
<td>Twin cable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 x 1.5 mm² = 8.3 mm</td>
<td>6 mm; total width: 14.8 mm</td>
</tr>
<tr>
<td></td>
<td>5 x 2.5 mm² = 12.3 mm</td>
<td>6 mm; total width: 18.8 mm</td>
</tr>
<tr>
<td>Cable with free end:</td>
<td>ferrules: 8 mm</td>
<td>8 mm; solid conductor</td>
</tr>
<tr>
<td></td>
<td>1.5 mm² = Ø 1.6 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5 mm² = Ø 2.3 x 2.8 mm</td>
<td></td>
</tr>
<tr>
<td>Wire range:</td>
<td>Screw version 0.5 – 2.5 mm²</td>
<td>Spring loaded 0.25 – 0.75 mm²</td>
</tr>
<tr>
<td></td>
<td>solid/fine-stranded</td>
<td>solid/fine-stranded</td>
</tr>
<tr>
<td>Strain relief:</td>
<td>Integrated into housing, available in black or white</td>
<td></td>
</tr>
<tr>
<td>Volume resistance:</td>
<td>approx. 0.8 mΩ</td>
<td>approx. 5 mΩ</td>
</tr>
<tr>
<td></td>
<td>(approximate value per male and female connection)</td>
<td></td>
</tr>
<tr>
<td>Rated impulse voltage:</td>
<td>Pollution degree 2</td>
<td>Pollution degree 2</td>
</tr>
<tr>
<td></td>
<td>4 kV for 250 V and 250/400 V</td>
<td>4 kV for mains, 0.8 kV Bus</td>
</tr>
<tr>
<td>Materials:</td>
<td>Insulation components: Thermoplastic material, halogen-free</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact parts, surface-plated:</td>
<td>Brass, Bronze</td>
</tr>
<tr>
<td></td>
<td>Brass</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bronze</td>
<td></td>
</tr>
<tr>
<td>Continuous temperature:</td>
<td>Cable: 70 °C, Insulation components: 100 °C</td>
<td></td>
</tr>
<tr>
<td>Flammability load:</td>
<td>Extension cable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>twin cable 5x2.5 mm² + 1 x 2 x 0.8 = 0.50 kWh + 1.52 kWh/m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>twin cable 3x1.5 mm² + 1 x 2 x 0.8 = 0.34 kWh + 0.83 kWh/m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control cable 2 x 2 x 0.8 = 0.24 kWh + 0.15 kWh/m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Connection cable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>twin cable 5x2.5 mm² + 1 x 2 x 0.8 = 0.25 kWh + 1.52 kWh/m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>twin cable 3x1.5 mm² + 1 x 2 x 0.8 = 0.17 kWh + 0.83 kWh/m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EIB Bus cable 2 x 2 x 0.8 = 0.12 kWh + 0.15 kWh/m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Connector</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EST 3 i3 = 0.17 kWh</td>
<td>BST 14 i3 = 0.12 kWh</td>
</tr>
<tr>
<td></td>
<td>EST 3 i5 = 0.25 kWh</td>
<td></td>
</tr>
<tr>
<td>Coding:</td>
<td>Mechanical coding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mains connector: coding GST 18i ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black or white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal connector: Wieland coding, black or white</td>
<td></td>
</tr>
</tbody>
</table>

Note: Connectors (control signal) must only be used in combination with a SELV or PELV power supply unit. The live component must be a female connector according to regulations. It is not possible to install cable in a ring circuit. In principle, not interchangeable with other connector systems available on the market. Mechanical coding only possible using the correct phase sequence. Protection against electric shock is guaranteed even when disconnected. Control signal coding can be visually identified by black coloring. All the components can be locked together.
Technical data

<table>
<thead>
<tr>
<th></th>
<th>Mains 3 pole</th>
<th>Mains 4 pole</th>
<th>Dimming signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage:</td>
<td>250 V</td>
<td>250 V</td>
<td>50 V</td>
</tr>
<tr>
<td>Rated current:</td>
<td>16 A</td>
<td>16 A</td>
<td>3 A</td>
</tr>
<tr>
<td>Number of poles:</td>
<td>3 pole</td>
<td>4 pole</td>
<td>2 pole</td>
</tr>
<tr>
<td>Pollution degree 2:</td>
<td>4 kV</td>
<td>0.8 kV</td>
<td></td>
</tr>
<tr>
<td>Type of protection:</td>
<td>IP 20, DIN VDE 0470 section 1/11.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable:</td>
<td>H05VV-F ...G, S05Z1Z1</td>
<td>L03VV-U, L03Z1Z1*</td>
<td></td>
</tr>
<tr>
<td>Cable diameter:</td>
<td>1.5 mm²</td>
<td>2 x 0.5 mm³</td>
<td></td>
</tr>
<tr>
<td>Cable cross section:</td>
<td>8.3 mm</td>
<td>9.2 mm</td>
<td>4.8 mm</td>
</tr>
<tr>
<td>Cable with free end:</td>
<td>ultrasonically welded, 9 mm</td>
<td>ultrasonically welded, 10 mm</td>
<td>solid, 9 mm</td>
</tr>
<tr>
<td>Flammability load:</td>
<td>EST 2i3</td>
<td>EST 2i4</td>
<td>BST 14i2</td>
</tr>
<tr>
<td>Extension cable:</td>
<td>0.16 kWh +0.4 kWh/m</td>
<td>0.32 kWh +0.6 kWh/m</td>
<td>0.24 kWh +0.15 kWh/m</td>
</tr>
<tr>
<td>Connection cable:</td>
<td>0.68 kWh +0.4 kWh/m</td>
<td>0.16 kWh +0.6 kWh/m</td>
<td>0.12 kWh +0.15 kWh/m</td>
</tr>
<tr>
<td>Coding:</td>
<td>Mechanical coding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type:</td>
<td>GST 18i3</td>
<td>GST 18i4</td>
<td>BST 14i2</td>
</tr>
<tr>
<td>Color:</td>
<td>black</td>
<td>black</td>
<td>blue, black</td>
</tr>
</tbody>
</table>

Note:

When using an ELV voltage supply for BST 14i2 (blue), it must be electrically isolated and have a basic insulation.

Connection to the live cable must be with a female connector according to the regulations. It is therefore not possible to have a ring circuit. Mechanical coding only possible using the correct phase sequence. Protected against accidental contact even when not connected. Dimming signal coding can be visually identified by blue coloring. All components can be interlocked.

Cable types L03... can stand a twisting torque of max. 0.15 Nm without a problem (compare DIN EN 50262/VDE 0619).

The BST 14i2 system is therefore suited for the connection of fixed devices. Higher twisting torques must be checked accordingly, if required.
PCB layout for solder connectors

PCB layout for GST 18 solder connector:

PCB layout for BST 14 solder connector:

PCB layout for EST connector:
(combination of GST and BST)
Installation instructions

Connectors with spring connection
GST 18i3, GST 18i4

1. Determine the sheath and insulation strip lengths
 – All measurements in mm
 – Tool required for ferrules
 Part No. 95.101.1300.0

2. Wiring
 for solid conductors
 Fix the wires
 by tightening them with a screwdriver

3. Wiring for fine-stranded conductors
 Open the clamping body with a screwdriver

4. Unwiring
 Open the clamping body with a screwdriver

5. Insert the 3 x 1.5\textdegree wire into the base in order to ensure protection degree IP40

6. Insert the 4 x 1.5\textdegree/2.5\textdegree wire into the base in order to ensure protection degree IP40

7. Insert the 4 x 0.75\textdegree wire into the base in order to ensure protection degree IP40

8. Assemble the housing

9. Attach the strain relief
Installation instructions

Appliance coupler, snap-in
GST 18i3, GST 18i4, GST 18i5

1. Determine the sheath and insulation strip lengths
 – All measurements in mm
 – Tool required for ferrules
 Part No. 95.101.1300.0

2. Wiring
 for solid conductors

3. Wiring
 for fine-stranded conductors
 Open the clamping body with a screwdriver

4. Unwiring
 Open the clamping body with a screwdriver

1. Determine the sheath and insulation strip lengths
 – All measurements in mm
 – Tool required for ferrules
 Part No. 95.101.1300.0

2. Wiring
 for solid conductors

3. Wiring
 for fine-stranded conductors
 Open the clamping body with a screwdriver

4. Unwiring
 Open the clamping body with a screwdriver
Installation instructions

Mounting flange for distribution unit
GST 18i5

Mounting flange for screw mount
1. Position the distribution unit on the mounting plate
2. Break off the latching pin
3. Insert the latching pin

Mounting flange for snap-on
4. Position the distribution unit on the mounting flange
5. Break off the latching pin
6. Insert the latching pin

Mounting flange for screw mount

Mounting flange for snap-on

4.
5.
6.
1. Position the distribution unit on the mounting plate
2. Break off the latching pin
3. Insert the latching pin

Mounting flange for screw mount

4. Position the distribution unit on the mounting flange
5. Break off the latching pin
6. Insert the latching pin

Mounting flange for distribution unit GST 18i3

Installation instructions

- Green/yellow
- Black
- White
- Brown

GST 18i3 screw connection

GST 18i4 screw connection
Installation instructions

Connector with screw connection, flat design
Sheath and insulation strip lengths

GST 18i5 screw connection GST 15i3 screw connection
1. Connector with screw connection, flat design
2. Sheath and insulation strip lengths
3. Installation instructions
4. GST 18i5 screw connection
 GST 15i3 screw connection
 blue
 green/yellow
 black
 brown
 gray
 blue brown
 green/yellow
Installation instructions

1. When connecting flat cable adapters for mains and EIB bus/control signal, note the latching side (3 pole on the left, 5 pole on the right). Latch the components together. Place the terminal block on the flat cable, observing the coding on the cable.

2. Slide on the base plate – note the coding of the terminal block and cable (see diagram on the left). The grooves on the terminal block as well as on the base plate indicate the correct position of the adapter on the cable. If it is not positioned correctly, it is only possible to slide on the base plate using a great deal of force. The unit must then be rotated by 180°

3. Turn the slotted screws in the flat cable until they reach the stop
 Mains: torque = 0.7 Nm
 Bus: torque = 1.0 Nm

4. Place the cover on top.

Additional notes:

- When mounting the connectors, a locking device must be used.
- To remove the cover, insert the screwdriver in the slot and lift gently.
- The ends of the flat cable must be terminated with the cable end cap. This guarantees the necessary insulation between bus conductors and power cables.
- Once the adapter has been removed, the sections of cable that have been terminated with piercing screws must be sealed with insulating tape.
- Caution: Do not connect the screen to ground.
- The functional reliability can only be guaranteed if original cable is used.
Technical data

Components:

Mains
Connection technology: Insulation-piercing contacts with plug-in outgoing circuit in accordance with Wieland GST coding
Terminal screws: Tightening torque: 0.8 Nm
Rated voltage: 250 V/400 V
Rated current: 16 A
Number of poles: 3, 5 pole
Regulations:
DIN VDE 0628,
VDE 0606 T200 in preparation
Approvals:
VDE, SEV
Type of protection: IP 20, DIN VDE 0470 section 1/11.92
Connection cable for incoming supply: Ø 5 – 13 mm
Materials:
Insulation components: thermoplastic material, halogen-free
Cover: polycarbonate, transparent
Contact parts: brass, surface-plated tin-bronze, surface-plated
Continuous temperature: 70 °C, Insulation components 100 °C
Flammability load:
Flat cable adapter GST 18i5 0.27 kWh
Flat cable adapter GST 18i3 0.18 kWh
Coding:
Mechanical coding
GST 18i, Code 1, black
General:
The voltage supply (incoming supply) in the flat cable is carried out using a screw-type flat cable adapter. The outgoing boxes can be adapted using insulation-piercing connection technology. The outgoing units themselves can be connected using gesis connector systems. The connectors must be locked with a locking device. The appropriate GST accessories should be used.

Please note the installation instructions on page 366!

Note:
The functional reliability can only be guaranteed if original cable is used.
Technical data

Flat cable

<table>
<thead>
<tr>
<th>Flat cable</th>
<th>PVC</th>
<th>Halogen-free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity x conductor cross section:</td>
<td>5 x 2.5 mm²</td>
<td>5 x 2.5 mm²</td>
</tr>
<tr>
<td>Outer sheath:</td>
<td>PVC according to CENELEC HD 21.1 S2, TM2</td>
<td>Thermoplastic PE compound, halogen free and no corrosive gases according to DIN VDE 0472 Section 813</td>
</tr>
<tr>
<td>Color of sheath:</td>
<td>Light green RAL 6027</td>
<td>Light green RAL 6027</td>
</tr>
<tr>
<td>Weight:</td>
<td>270 g/m</td>
<td>260 g/m</td>
</tr>
<tr>
<td>Dimension (W x H):</td>
<td>24 x 6 mm</td>
<td>24 x 6 mm</td>
</tr>
<tr>
<td>Flammability load:</td>
<td>0.778 kWh/m</td>
<td>0.671 kWh/m</td>
</tr>
<tr>
<td>Flammability behavior:</td>
<td>self-extinguishing according to IEC 60332.1</td>
<td>self-extinguishing according to IEC 60332.1</td>
</tr>
<tr>
<td>Bending radius:</td>
<td>min. 60 mm</td>
<td>min. 60 mm</td>
</tr>
</tbody>
</table>

Structure:
- **Copper conductor:** bare, fine-stranded according to CENELEC HD 383 S2, Class 6
- **Wire insulation:** PVC according to CENELEC HD 21.1 S2, TI2
- **Color of wires:** ![Colors]

Technical data:
- **Conductor cross section:** 2.5 mm²
- **Test voltage:** 4 kV
- **Rated voltage:** 450/750 V
- **Test current:** according to IEC 60364-5-523
- **DC resistance:** 7.98 Ω/km

Note: The functional reliability can only be guaranteed if original cable is used.

The cable colors have been adapted to the new European standard HD 208 S2. The assignment corresponds to international recommendations.
Technical data

Connection technology: Insulation-piercing contacts with plug-in outgoing circuit in accordance with Wieland GST, BST, EST coding

Terminal screws: Tightening torque: 1.0 Nm

Rated voltage: 50 V

Rated current: 3 A

Number of poles: 2 pole (+,-)

Regulations: EIB manual

Approvals: according to EIB manual

Connection cable for Incoming supply: Ø 3 – 8 mm

Materials: Insulation components: thermoplastic material, halogen free
Cover: polycarbonate, transparent
Contact parts: brass, surface-plated tin-bronze, surface-plated

Continuous temperature: 70 °C, Insulation components 100 °C

Flammability load: Flat cable adapter BST 14i 0.12 kWh

Coding: Mechanical coding
BST 14i
Other coding: black

General: Connectors must be used only in combination with a SELV or PELV power supply unit.

The voltage supply (incoming supply) in the flat cable is carried out using a screw-type flat cable adapter. The outgoing boxes can be adapted using insulation-piercing connection technology. The outgoing units themselves can be connected using *geesis* connector systems. Please note the installation instructions on page 336!

Note: The functional reliability can only be guaranteed if original cable is used.
Technical data

Flat cable

Quantity x Conductor cross section:
- PVC: 2 x 1.5 mm²
- Halogen-free: 2 x 1.5 mm²

Outer sheath:
- PVC

Color of sheath:
- Dark grey

Weight:
- PVC: 90 g/m
- Halogen-free: 86 g/m

Dimension (W x H):
- PVC: 11 x 6 mm
- Halogen-free: 11 x 6 mm

Flammability load:
- PVC: 0.48 kWh/m
- Halogen-free: 0.44 kWh/m

Flammability behavior:
- Self-extinguishing according to IEC 60332.1
- Self-extinguishing according to IEC 60332.1

Bending radius:
- PVC: min. 60 mm
- Halogen-free: min. 60 mm

Structure:

Copper conductor:
- Tin-plated according to CENELEC HD 383 S2, Class 5
- Tin-plated according to CENELEC HD 383 S2, Class 5

Wire insulation:
- PE according to DIN VDE 0207 Section 2, 2YI2
- PE according to DIN VDE 0207 Section 2, 2YI2

Wire colors:
- Natural
- Natural

Shield:
- Twin screen from aluminium tape, electrically isolated
- Twin screen from aluminium tape, electrically isolated

Technical data:

Conductor cross section:
- PVC: 1.5 mm²
- Halogen-free: 1.5 mm²

Rated voltage:
- PVC: 300/300 V
- Halogen-free: 300/300 V

Rated current:
- PVC: 3 A
- Halogen-free: 3 A

DC resistance:
- PVC: 13.7 Ω/km
- Halogen-free: 13.7 Ω/km

Capacitance:
- PVC: 70 pF/m
- Halogen-free: 70 pF/m

Attenuation at 1 MHz:
- PVC: nom. 1.2 dB/100 m
- Halogen-free: nom. 1.2 dB/100 m

Surge impedance1 MHz:
- PVC: nom. 75 Ω
- Halogen-free: nom. 75 Ω
Technical data

Components:

Connection technology:
Insulation-piercing contact with plug-in outgoing circuit in accordance with
Wieland GST, BST, EST coding

Terminal screws:
Tightening torque: 0.8 Nm
Tightening torque: 1.0 Nm

Rated voltage:
250 V/400 V
50 V

Rated current:
16 A
3 A

Number of poles:
3/5 pole
2 pole (+,-)

Regulations:
VDE 0628,
Preliminary draft IEC 61535
IEC 998-2-3 (insulation-piercing clamping device)

Approvals:
VDE, SEV according to EIB manual

Type of protection:
IP 20, DIN VDE 0470 section 1/11.92

Connection cable for incoming supply:
Ø 5 – 13 mm
Ø 3 – 8 mm

Materials:
Insulation components: thermoplastic material, halogen-free
Cover: polycarbonate, transparent
Contact parts: brass, surface-plated tin-bronze, surface-plated

Continuous temperature:
70 °C, Insulation components 100 °C

Flammability load:
Flat cable adapter GST 18i5 0.27 kWh
Flat cable adapter GST 18i3 0.18 kWh
Flat cable adapter BST 14i 0.12 kWh

Coding:
Mechanical coding
Combination connector for mains and signal, type EST ...
3 pole tap-off, all phases with standard GST 18i coding
GST 18i3/5 color: black
EIB coding: green
Other coding: black

General:
The bus signal must have a SELV or PELV power supply unit.

The voltage supply (incoming supply) in the flat cable is carried out using a screw-type flat cable adapter. The outgoing boxes can be adapted using insulation-piercing connection technology. The outgoing units themselves can be connected using gesis connector systems. The connectors must be locked with the adapter. The appropriate GST accessories should be used. Please note the installation instructions.

Note:
The functional reliability can only be guaranteed if original cable is used.

* The cable colors have been adapted to the new European standard HD 208 S2.
The assignment corresponds to international recommendations.
Technical data

Flat cable

<table>
<thead>
<tr>
<th>Description</th>
<th>PVC</th>
<th>Halogen-free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity x</td>
<td>5 x 2.5 mm² + 2 x 1.5 mm²</td>
<td>5 x 2.5 mm² + 2 x 1.5 mm²</td>
</tr>
<tr>
<td>Conductor cross section</td>
<td>PVC according to CENELEC HD 21.1 S2, TM2</td>
<td>Thermoplastic PE Compound, halogen-free and no corrosive gases according to DIN VDE 0472 section 813</td>
</tr>
<tr>
<td>Outer sheath</td>
<td>Purple RAL 4005</td>
<td>Purple RAL 4005</td>
</tr>
<tr>
<td>Color of sheath</td>
<td>PVC according to CENELEC HD 21.1 S2, TM2</td>
<td>340 g/m</td>
</tr>
<tr>
<td>Weight</td>
<td>32 x 6 mm</td>
<td>32 x 6 mm</td>
</tr>
<tr>
<td>Dimension (W x H)</td>
<td>1.18 kWh/m</td>
<td>0.99 kWh/m</td>
</tr>
<tr>
<td>Flammability load</td>
<td>Self-extinguishing according to IEC 60332.1</td>
<td>Self-extinguishing according to IEC 60332.1</td>
</tr>
<tr>
<td>Flammability behavior</td>
<td></td>
<td>Low risk of fire spreading according to IEC 60332-3C</td>
</tr>
<tr>
<td>Bending radius</td>
<td>min. 60 mm</td>
<td>Low level of smoke development IEC 61034-1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>min. 60 mm</td>
</tr>
</tbody>
</table>

Power component

Structure:

- **Copper conductor:** bare, fine-stranded according to CENELEC HD 383 S2, Class 6
- **Wire insulation:** PVC according to CENELEC HD 21.1 S2, T12
- **Wire colors:** black, brown, black, blue, yellow/green

Technical data:

<table>
<thead>
<tr>
<th>Description</th>
<th>PVC</th>
<th>Halogen-free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor cross section</td>
<td>2.5 mm²</td>
<td>2.5 mm²</td>
</tr>
<tr>
<td>Test voltage</td>
<td>4 kV</td>
<td>4 kV</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>450/750 V</td>
<td>450/750 V</td>
</tr>
<tr>
<td>Test current</td>
<td>according to IEC 60364-5-523</td>
<td>according to IEC 60364-5-523</td>
</tr>
<tr>
<td>DC resistance</td>
<td>7.98 Ω/km</td>
<td>7.98 Ω/km</td>
</tr>
</tbody>
</table>

Bus component

Structure:

- **Copper conductor:** tin plated according to CENELEC HD 383 S2, Class 5
- **Wire insulation:** PE according to DIN VDE 0207 Section 2, 2Y12
- **Wire colors:** natural
- **Shield:** Twin screen from aluminium tape, electrically isolated

Technical data:

<table>
<thead>
<tr>
<th>Description</th>
<th>PVC</th>
<th>Halogen-free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor cross section</td>
<td>1.5 mm²</td>
<td>1.5 mm²</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>300/330 V</td>
<td>300/330 V</td>
</tr>
<tr>
<td>Rated current</td>
<td>3 A</td>
<td>3 A</td>
</tr>
<tr>
<td>DC resistance</td>
<td>13.7 Ω/km</td>
<td>13.7 Ω/km</td>
</tr>
<tr>
<td>Capacitance</td>
<td>70 pF/m</td>
<td>70 pF/m</td>
</tr>
<tr>
<td>Attenuation at 1 MHz</td>
<td>nom. 1.2 dB/100 m</td>
<td>nom. 1.2 dB/100 m</td>
</tr>
<tr>
<td>Surge impedance 1 MHz</td>
<td>nom. 75 Ω</td>
<td>nom. 75 Ω</td>
</tr>
</tbody>
</table>
Installation instructions

1. Oder
2. Kräftig nach unten drücken
3. Alle Schrauben bis zum Anschlag

Flat cable system 7 pole

Technical data

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Conductor cross section:</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 2</td>
<td>5 x 2.5 mm + 2 x 1.5 mm</td>
</tr>
</tbody>
</table>

Outer sheath:

PVC according to CENELEC HD 21.1 S2, TM2

Color of sheath:

Purple RAL 4005

Weight:

350 g/m

Dimension (W x H):

32 x 6 mm

Flammability load:

1.18 kWh/m

Flammability behavior:

Self-extinguishing according to IEC 60332.1

Bending radius:

min. 60 mm

Power component

Structure:

Copper conductor:

bare, fine-stranded according to CENELEC HD 383 S2

Class 6

Wire insulation:

PVC according to CENELEC HD 21.1 S2, TI2

Wire colors:

black, brown, black, blue, yellow/green

Technical data:

Conductor cross section: 2.5 mm²

Test voltage: 4 kV

Rated voltage: 450/750 V

Test current:

according to IEC 60364-5-523

DC resistance:

7.98 Ω/km

Bus component

Structure:

Copper conductor:

tin plated according to CENELEC HD 383 S2, Class 5

Wire insulation:

PE according to DIN VDE 0207 Section 2, 2YI2

Wire colors:

natural

Shield:

Twin screen from aluminium tape, electrically isolated

Technical data:

Conductor cross section: 1.5 mm²

Rated voltage:

300/330 V

Rated current:

3 A

DC resistance:

13.7 Ω/km

Capacitance:

70 pF/m

Attenuation at 1 MHz:

nom. 1.2 dB/100 m

Surge impedance 1 MHz:

nom. 75 Ω
Technical data

Flat cable 5 x 10 mm²

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity x conductor cross section</td>
<td>5 x 10 mm²</td>
</tr>
<tr>
<td>Outer sheath:</td>
<td>PVC accord. to CENELEC HD 21.1 S2, TM2</td>
</tr>
<tr>
<td>Color of sheath:</td>
<td>light green, similar to RAL 6027</td>
</tr>
<tr>
<td>Weight:</td>
<td>845 g/m</td>
</tr>
<tr>
<td>Dimension (B x H):</td>
<td>38.5 x 10 mm</td>
</tr>
<tr>
<td>Flammability load:</td>
<td>2.12 kWh/m</td>
</tr>
<tr>
<td>Flammability behavior:</td>
<td>self-extinguishing accord. to IEC 60332-1</td>
</tr>
<tr>
<td>Structure:</td>
<td>unplated, fine-stranded</td>
</tr>
<tr>
<td>Copper conductor:</td>
<td>accord. to DIN VDE 0295 Class 5</td>
</tr>
<tr>
<td>Wire insulation:</td>
<td>PVC accord. to CENELEC HD 21.1 S2, TM2</td>
</tr>
<tr>
<td>Wire colors:</td>
<td>*</td>
</tr>
</tbody>
</table>

Technical data:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test voltage:</td>
<td>4 kV</td>
</tr>
<tr>
<td>Nominal voltage:</td>
<td>690 V</td>
</tr>
<tr>
<td>Test current:</td>
<td>accord. to IEC 60364-5-523 and SEV NIN 42912.2</td>
</tr>
<tr>
<td>DC resistance:</td>
<td>1.91 Ω/km</td>
</tr>
<tr>
<td>Bending radius:</td>
<td>min. 100 mm</td>
</tr>
</tbody>
</table>

* The cable colors have been adapted to the new European standard HD 208 S2. The assignment corresponds to international recommendations.
Installation instructions

Additional information and notes:
- Flat cable 5 x 16 mm², 450/750 V
- Box 2x (5 x 6 mm²)
- Use only with original cable
Technical data

Flat cable 5 x 16 mm²

<table>
<thead>
<tr>
<th>Outer sheath:</th>
<th>PVC</th>
<th>Halogen-free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color of sheath:</td>
<td>light gray</td>
<td>Polyolefine, halogen-free light gray</td>
</tr>
<tr>
<td>Weight:</td>
<td>1.3 kg/m</td>
<td>1.3 kg/m</td>
</tr>
<tr>
<td>Dimension (B x H):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flammability load:</td>
<td>2.95 kWh/m</td>
<td>2.5 kWh/m</td>
</tr>
<tr>
<td>Flammability behavior:</td>
<td>self-extinguishing accord. to IEC 60332-1</td>
<td>No corrosive gas accord. to IEC 60754-2, low fire transmission accord. to IEC 60332-3, low smoke development accord. to IEC 61034</td>
</tr>
</tbody>
</table>

Quantity x conductor cross section:

<table>
<thead>
<tr>
<th>PVC</th>
<th>5 x 16 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halogen-free</td>
<td>5 x 16 mm²</td>
</tr>
</tbody>
</table>

Structure:

<table>
<thead>
<tr>
<th>PVC</th>
<th>Halogen-free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper conductor:</td>
<td>unplated, fine-stranded accord. to CENELEC HD 383 S2 Class 6</td>
</tr>
<tr>
<td>Wire insulation:</td>
<td>PVC accord. to CENELEC HD 21.1 S3, T3</td>
</tr>
</tbody>
</table>

Wire colors:

- PVC: White, Black, Blue, Green, Yellow
- Halogen-free: White, Black, Blue, Green, Yellow

Technical data:

<table>
<thead>
<tr>
<th>PVC</th>
<th>Halogen-free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test voltage:</td>
<td>450/750 V accord. to IEC 60364-5-523 and SEV NIN 42512.2</td>
</tr>
<tr>
<td>Nominal voltage:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Current-carrying capability:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DC resistance:</td>
<td>1.15 Ω/1000 m (20 °C) min. 113 mm</td>
</tr>
<tr>
<td>Bending radius:</td>
<td></td>
</tr>
</tbody>
</table>

The cable colors have been adapted to the new European standard HD 208 S2. The assignment corresponds to international recommendations.
Technical data

Pole: 2

Rated voltage: 48 V

Rated current: 25 A (only applies to male and female connectors)
Prefabricated cables with fuse carrier max. 15 A

Rated cross section: 2.5 mm² fine-stranded

Type of connection: Screw, crimp connection

Wire range: Screw component: min. 0.5 mm²; max. 2.5 mm² solid and fine-stranded without ferrule

Insulation strip length: 7 mm

Approvals:

VDE 0711 section 1
(DIN EN 60598-1) in connection with VDE 0609 section 1 (DIN EN 60999),
VDE 0470 section 1
(DIN EN 60529), DIN IEC 352 section 2
Flat cable fuses in accordance with
DIN 72981 section 3
Transformer: MM, ENEC, VDE, CE

Type of protection: IP 20 in accordance with
DIN VDE 0470 section 1/11.92

Materials:

Insulation components: PA 6.6 UL 94 V-0, continuous thermal stability in accordance with-
DIN VDE 0304,
20,000 h/5,000 h, 100/115 °C
Glow wire test in accordance with DIN VDE 0471 section 21 (IEC 695), 960 °C

Color: white

Metal components: Brass with silver plating

Screw: galvanized chrome steel

Cable:

50 x 0.25 stranded conductors with tin plated, 2 layers, halogen-free, low flammability

Color: white

Diameter: 3.9 < d < 4.2 mm
continuous temperature 120 °C

Flammability load: 0.064 kWh/m

Installation instructions:

Low voltage lighting installations may only be installed by experts under consideration of DIN VDE 0100 section 559 or section 559/A2
See next page for electronic transformer

Technical data

Pole: 2

Rated voltage: 48 V

Rated current: 16 A

Rated cross section: 1.5/2.5/6 mm²

Type of connection: Screw or crimp connection

Wire range:
- min. 0.5 mm²
- max. 2.5 mm²

Insulation strip length: 7 mm, with ferrules

Approvals:
- Transformer: MM, ENEC, VDE, CE
- Type of protection: IP 20 according to DIN VDE 0470 section 1/11.92

Materials
- Insulation components: thermoplastic material, Continuous temperature 110 °C
- Color: white
- Metal components: Brass with nickel plating
- Screw: galvanized chrome steel
- **Cable:**
 - H05VV-F2 x 1.5
 - FLKK 2 x 2.5
- Color: white

Installation instructions:
Low voltage lighting installations may only be installed by experts under consideration of DIN VDE 0100 Section 559 or Section 559/A2

Electronic transformer ST 16/ST 17

Primary version: with pre-assembled cable GST 18i 3 or with a pair of screw terminals with strain relief

Secondary version: with pre-assembled cable ST 16 / ST 17

Primary nominal voltage: 230 V AC, 50/60 Hz

Power range: 35-105 W

Nominal output voltage: 11.7 V

Power current in nominal mode: 0.45 V

Power factor: 0.96 c

Degree of effectiveness: 95%

Ambient temperature t_a: max. 50 °C for maximum load

Housing temperature t_h: max. 90 °C for maximum load

Short circuit protection: electronic, automatic restart

Overload/temperature protection: Automatic regulation of power up to 70% followed by disconnection

No-load operation: Locked

Flammability protection: Disconnection in event of error

Protection class: II

Dimmable: with TRONIC dimmer and universal dimmer

Dimensions: 175 x 42 x 18 mm

Other: Adjustable with reverse phase control dimming, not intended for forward phase dimming
Technical data

General information:

Number of poles: 3 pole (L, ground, N)

Rated voltage: 250 V

Rated current: 16 A

Locking device: Integrated, can only be removed with special tool

Regulations: DIN VDE 0606 T 200

Approvals: DIN VDE 0606 T 200

Type of protection: IP 20, DIN VDE 0470
 IP 40 with protective cover, in preparation

Mating/disconnect cycles: approx. 50 – 100 insertions/withdrawals at an ohmic load of 16 A

Rated impulse voltage: 4 kV / 250 V

Material:
- Insulating part: Thermoplastic, halogen-free
- Contact parts: Plated brass
- Screws: Zinc-plated steel

Continuous temperature:
- Insulation components: 100° C
- Cables: 70° C

Ambient conditions: Pollution degree 2 according to DIN VDE 0110 Part 1
Definition: Only non-conductive pollution occurs.
Occasional transient conductivity due to moisture condensation must be taken into account.
Example: Private homes, retail sites and other commercial buildings

Coding: Mechanical coding symbolized by color code
white and black with the same mechanical coding
All components available for delivery in these colors.

General: Protection against inadvertent contact is guaranteed even when disconnected. Ground conductor is leading.
The live component must be a female connector according to regulations.
It is not possible to install cable in a ring circuit.

Note: Compliance with VDE 0606 – T 200 will not automatically prevent a dangerous non-polarization with other installation connector systems.
Installation system GST 15i3 is not a substitute for the national connector and outlet system for home applications.
A dangerous non-polarization is impossible with systems that are defined in the standards of IEC 60309, IEC 60320 and IEC 60906 or with the national connector and outlet systems for home applications.
Technical data

Connector:

Variations: Female and male connectors with strain relief
Type of connection: Screw, M 3
Torque: max. 0.5 Nm
Wire range: 0.75 – 1.5 mm²
Sheath strip length: L, N: 20 mm,
 Ground: 28 mm
Insulation strip length: 7+1 mm
Strain relief: Independent of the upper housing part
Cable type: H05VV, NYM
General: for cables of 5.5 – 9.0 mm available on request
Flammability load: 0.01 kWh

Snap-in, appliance coupler:

Variations: Female and male connectors with frames for snap-in in housing cut-out
Type of connection: Screw, M 3
Torque: max. 0.5 Nm
Wire range: 0.5 – 1.5 mm²
Insulation strip length: 8 mm
Housing material thickness: Frame for snap-in into 0.5 – 1.5 mm thick walls
Flammability load: 0.01 kWh

Cable, pre-assembled:

Variations: Connection cable, Female – Male
 Connection cable, Female – Free End
 Connection cable, Male – Free end
Type of connection: screw, M 3
Free wire ends: Sheath strip length 20 mm
 Insulation strip length 8 mm, with ferrules
Cable: With halogen (PVC) H05VV-F 3G1.5
 Halogen-free S05Z1Z1/F 3G1.5
Cable length: 0.2 – 10 m; other lengths available on request
Flammability load: Connection cable: 0.02 kWh + 0.4 kWh/m
 Connection cable: 0.01 kWh + 0.4 kWh/m
Technical data

Connector:
Variations:
Female and male connectors with strain relief

Type of connection:
Screw, M3

Torque:
max. 0.5 Nm

Wire range:
0.75 – 1.5 mm²

Sheath strip length:
L, N: 20 mm, Ground: 28 mm

Insulation strip length:
7+1 mm

Strain relief:
Independent of the upper housing part

Cable type: H05VV, NYM

General:
For cables of 5.5 – 9.0 mm available on request

Flammability load:
0.01 kWh

Snap-in, appliance coupler:
Variations:
Female and male connectors with frames for snap-in housing cut-out

Type of connection:
Screw, M3

Torque:
max. 0.5 Nm

Wire range:
0.5 – 1.5 mm²

Insulation strip length:
8 mm

Housing material thickness:
Frame for snap-in into 0.5 – 1.5 mm thick walls

Flammability load:
0.01 kWh

Cable, pre-assembled:
Variations:
Connection cable, Female – Male
Connection cable, Female – Free End
Connection cable, Male – Free end

Type of connection:
screw, M3

Free wire ends:
Sheath strip length 20 mm
Insulation strip length 8 mm, with ferrules

Cable:
With halogen (PVC) H05VV-F 3G1.5
Halogen-free S05Z1Z1/F 3G1.5

Cable length:
0.2 – 10 m; other lengths available on request

Flammability load:
Connection cable: 0.02 kWh + 0.4 kWh/m
Connection cable: 0.01 kWh + 0.4 kWh/m
Technical data

<table>
<thead>
<tr>
<th>gesis®</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>378</td>
</tr>
<tr>
<td>EIB V</td>
<td>382</td>
</tr>
<tr>
<td>EIB RM</td>
<td>386</td>
</tr>
<tr>
<td>EIB M2</td>
<td>390</td>
</tr>
<tr>
<td>LON</td>
<td>394</td>
</tr>
</tbody>
</table>
Technical data

Mounting dimensions *gesis*® RC
when using round supply cable
Dimensions in mm

when using flat cable for supply
Dimensions in mm
Mounting dimensions \textit{gesis}® \textit{RC R-16/0}

for installation in \textit{gesis} RAN

Dimensions in mm

\begin{center}
\includegraphics[width=\textwidth]{mounting_dimensions.png}
\end{center}

\textbf{Radio technology in general:}

\textbf{EnOcean – an innovative radio system}

The new \textit{gesis} \textit{RC} device series uses our partner’s radio system EnOcean. This new, innovative radio system provides major benefits compared to the systems available on the market. Industrial buildings benefit from maintenance-free switches (no batteries required) and an almost unlimited number of radio channels. The switches are identified with unique numbers for their clear assignment to the switching outputs. A total of over 4 billion numbers are available for identification. A switch with EnOcean radio technology emits less high-frequency radiation than a conventional switch.

\textbf{Considering the range of radio technology:}

EnOcean radio transmitters (such as the switches) send event-controlled telegrams to the EnOcean radio receiver. In general, there is no radio transmission unless a switch/sensor is operated. The receiver checks the incoming telegrams and uses them to control its outputs. Due to the transmission technology patented by EnOcean, misinterpretation is excluded. As the transmission system is not restricted to a limited number of channels, plans for avoiding incorrect switching are not necessary.

Since the radio signals are electromagnetic waves, the signal is dampened (becomes weaker) on its way from the transmitter to the receiver. This means that the field intensity decreases as the distance to the transmitter increases. When the receiver is too far away from the transmitter, it can no longer receive the telegrams. Please also note that the range is decreased by specific materials and that electrically conductive materials in particular have a negative impact. The construction materials used in the building therefore have a major influence on the radio range.
General:

Electrically conductive construction materials such as aluminum, metal, metal film or carbon fibers decrease the range.
The intensity of the radio signal received not only depends on the obstacle’s thickness, but also on the angle in which it is positioned to the transmitter. Walls that are positioned at an angle to the transmitter-receiver connection have a greater attenuating effect as equally thick walls that are positioned vertically to the radio waves’ path.
Radio shadows might be created behind objects made of metal or metal nets.
In this case, proper signal receipt is no longer guaranteed and has to be considered in planning.

Ceilings and walls:
- Transparent partitions: typically 30 m range in aisles, 100 m in halls
- Plaster walls / dry wood: typically 30 m range, through max. 5 walls
- Brick walls / concrete: typically 20 m range, through max. 3 walls
- Steel-enforced concrete walls/ceilings: typically 10 m range, through max. 1 ceiling
- Fire protection walls, elevator shafts, stairwells and supply areas should be regarded as shields.

Other materials between transmitter and receiver, which decrease the range:
- Insulating material on metal film
- Lead glass or metal-plated glass
- Steel furniture
- Suspended ceilings made of metal (when the receiver is installed in the suspended ceiling)
 – ESD floors or floor plates with an aluminum surface
 (when the receiver is installed in a raised floor)

Installation of the transmitter:
When the transmitter is installed on a metal surface, the range might be reduced as well.

Other high-frequency transmitters:
The distance between EnOcean transmitters and transmission devices from other suppliers, which also use high-frequency signals, should be at least 0.5 m (for example computers, audio and video systems).
Technical data

Radio technology:

Radio frequency: 868.3 MHz
Bandwidth: 280 kHz
Range:
 - during operation: see under “General” also
 - in learning mode:
 - Switching output: 83.020.0500.0 Receipt reduced to approx. 5 m
 - Window treatment output: 83.020.0501.0 Receipt reduced to approx. 5 m (set to coasting)
 - Window treatment output: 83.020.0501.1 Receipt not reduced
 - Alarm transmitter: 83.020.0502.0 300 m nominal range

Transmission power: max. 10 mW, only during telegram transmission
Telegram: EnOcean, patented transmission technology
Compatibility: Compatible with products using EnOcean technology

Switching loads per output:

gesis RC V-0/4

Switching voltage: 230 V
Nominal current: 16 A ohmic load
Filament lamp load: max. 2000 W
Filament lamp load:
 - uncompensated:
 - 18 W: 60
 - 36 W: 30
 - 58 W: 18
 - compensated:
 - 18 W: 8 (max. capacity 35µF)
 - 36 W: 7 (max. capacity 35µF)
 - 58 W: 5 (max. capacity 35µF)

Electronic ballast from Siemens/Osram

- 18 W: 15
- 36 W: 12
- 58 W: 10

HQL / HQI: max. 250 W at a compensation of 21µF
Minimum load: 0.5 A at 230 V

gesis RC V-0/2W AL 1 PH

Switching voltage: 230 V
Nominal current: 5 A ohmic load
Switching load: 575 VA at 230 V and cos ϕ = 0.4
Accessories gesis® EIB V

ETS product database

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Std. Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>00.000.0066.1</td>
<td>1</td>
</tr>
</tbody>
</table>

www.gesis.com

The current Wieland product database is available for download or on data carrier on request
Floppy disk
or for download from the Internet

Mounting dimensions gesis® EIB V

when using round cable for supply

Dimensions in mm

![Diagram of Mounting Dimensions (Round Cable)](image_url)

when using flat cable for supply

Dimensions in mm

![Diagram of Mounting Dimensions (Flat Cable)](image_url)

3 phase and single-phase connection

Differentiated by the part number:

Devices from series gesis EIB V with a part number ending in 0 have a 3 phase mains connection, while devices with part numbers ending in 2 have a single-phase mains connection.

The difference:

The 3 phase devices are supplied with PE, N, L1, L2 and L3. All five pins of the GST18i5 supply are occupied and used in the device.

The single-phase version is also supplied with a GST18i5 female connector. However, only the conductor connected to pin 2 of the female connector is used in the device as the outer conductor.

Connection of different outer conductors in the single-phase version:

If, for each device, the outer conductor L2 does not have a load, another outer conductor will have to be connected to

Functionality of gesis EIB V:

<table>
<thead>
<tr>
<th>Type</th>
<th>Part No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesis EIB V-0/2W SI</td>
<td>83.020.0211.0</td>
<td>1.1; 1.4; 3.1; 3.2; 3.3; 3.4; 3.5; 3.7; 3.8; 3.9; 3.11; 3.12; 3.13</td>
</tr>
<tr>
<td>gesis EIB V-0/2W SI 1PH</td>
<td>83.020.0211.2</td>
<td>1.1; 1.2; 2.1; 2.2; 2.3; 2.5; 2.6; 2.7; 3.1; 3.3; 3.4; 3.5; 3.6; 3.11; 3.12</td>
</tr>
<tr>
<td>gesis EIB V-0/2W</td>
<td>83.020.0212.0</td>
<td>1.1; 1.2; 1.3; 1.4</td>
</tr>
<tr>
<td>gesis EIB V-0/2W 1PH</td>
<td>83.020.0212.2</td>
<td>1.1; 1.2; 2.1; 2.2; 2.3; 2.5; 2.6; 2.7; 3.1; 3.3; 3.4; 3.5; 3.6; 3.11; 3.12</td>
</tr>
<tr>
<td>gesis EIB V-0/2SD</td>
<td>83.020.0213.0</td>
<td>1.1; 1.2; 1.3; 1.4</td>
</tr>
<tr>
<td>gesis EIB V-0/2SD 1PH</td>
<td>83.020.0213.2</td>
<td>1.1; 1.2; 1.3; 1.4</td>
</tr>
<tr>
<td>gesis EIB V-0/6</td>
<td>83.020.0214.0</td>
<td>1.1; 1.2; 1.3; 1.4</td>
</tr>
<tr>
<td>gesis EIB V-0/2W</td>
<td>83.020.0216.0</td>
<td>1.1; 1.2; 1.3; 1.4</td>
</tr>
<tr>
<td>gesis EIB V-0/2W 1PH</td>
<td>83.020.0216.2</td>
<td>1.1; 1.2; 1.3; 1.4</td>
</tr>
<tr>
<td>gesis EIB V-56/4 (RC)</td>
<td>83.020.0220.0</td>
<td>1.1; 1.2; 1.4</td>
</tr>
<tr>
<td>gesis EIB V-0/4B</td>
<td>83.020.0225.0</td>
<td>1.1; 1.2; 1.3; 1.4</td>
</tr>
<tr>
<td>gesis EIB V-0/4B 1PH</td>
<td>83.020.0225.2</td>
<td>1.1; 1.2; 1.3; 1.4</td>
</tr>
</tbody>
</table>

The following functions/parameters can be set via software:

1. General functions
 1.1 Response to bus voltage drop
 1.2 Response to bus voltage recovery
 1.3 Scenario control
 1.4 Disable function
2. Switching functions
 2.1 ON delay
 2.2 OFF delay
 2.3 Stairwell function
 2.4 Flashing function
 2.5 Status message automatically sent or on request
 2.6 Logic combinations possible
 2.7 Break contact or make contact optional
 2.8 Inversion of switching object (input object)
3. Window treatment functions
 3.1 Response to alarm
 3.2 Response after termination of an alarm
 3.3 Monitoring time setting
 3.4 Setting the – travel time – window-blind slats
 – reverse break – security position
 – reverse the direction of rotation
 3.5 Fanning after a Down command
 3.6 Approach to a parameterized fixed position
 3.7 Positioning of the shading height and the slat angle
 3.8 Automatic travel time recognition
 3.9 Setting the slat adjustment time (multiple steps)
 3.10 Saving and calling specific positions
 3.11 Use as rolling actuator (no incremental command)
 3.12 Use as motor actuator (continuous operation)
 3.13 Status feedback of the positions automatically or on request
4. Dimming functions
 4.1 Setting the control voltage limits
 4.2 Setting the dimming time
 4.3 ON/OFF settable via dimming function
 4.4 Dimming response after receipt of a value telegram
 4.5 Controllable lighting value on switch-on
 4.6 Status feedback of the switching or dimming status
 automatically or on request
5. Input functions via radio (RC)
 5.1 Input selectable as:
 – Switching function/edge evaluation (ON, OFF, toggle function)
 – Window treatment function (up/down; stop/slat adjustment command)
 – Dimming function
 – (ON/brighter; OFF/darker, toggle)
 – Value transmission function
 – 1 byte evaluation EnOcean ORG6
 – 1 byte data transfer 1:1 transmission
 – 4 byte evaluation ORG7 EnOcean
 (transfer of a selectable 1 byte segment
 from the 4 byte EnOcean telegram) 1:
 – Alarm evaluation from the Wieland alarm transmitter
Technical data

Switching loads per output:

<table>
<thead>
<tr>
<th>gesis EIB V-02W SI</th>
<th>83.020.0211.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesis EIB V-02W SI 1PH</td>
<td>83.020.0211.2</td>
</tr>
<tr>
<td>gesis EIB V-02W</td>
<td>83.020.0216.0</td>
</tr>
<tr>
<td>gesis EIB V-02W 1PH</td>
<td>83.020.0216.2</td>
</tr>
<tr>
<td>gesis EIB V-02 +1W window treatment outputs only</td>
<td>83.020.0212.0</td>
</tr>
<tr>
<td>gesis EIB V-02 +1W 1PH window treatment outputs only</td>
<td>83.020.0212.2</td>
</tr>
</tbody>
</table>

Switiching loads per output:

<table>
<thead>
<tr>
<th>gesis EIB V-02 +1W</th>
<th>83.020.0212.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesis EIB V-02 +1W 1PH</td>
<td>83.020.0212.2</td>
</tr>
<tr>
<td>gesis EIB V-02SD</td>
<td>83.020.0213.0</td>
</tr>
<tr>
<td>gesis EIB V-02SD 1PH</td>
<td>83.020.0213.2</td>
</tr>
</tbody>
</table>

Switching load max. 35µF at 230 V and cos ϕ = 0.4

Nominal current 16 A ohmic load

Switching load 575 VA / at 230 V

Switching voltage 230 V

Technical data

Switching loads per output:

<table>
<thead>
<tr>
<th>EIB V-02+1W</th>
<th>83.020.0212.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIB V-02+1W 1PH</td>
<td>83.020.0212.2</td>
</tr>
<tr>
<td>EIB V-02SD</td>
<td>83.020.0213.0</td>
</tr>
<tr>
<td>EIB V-02SD 1PH</td>
<td>83.020.0213.2</td>
</tr>
</tbody>
</table>

Switching voltage 230 V

Nominal current 16 A ohmic load

Indicator load max. 2000 W

Conventional electronic ballast

Fluorescent lamps

uncompensated

18 W 60 pcs.
36 W 30 pcs.
58 W 18 pcs.

compensated

18 W 8 pcs. (max. capacity 35µF)
36 W 7 pcs. (max. capacity 35µF)
58 W 5 pcs. (max. capacity 35µF)

Electronic ballast from Siemens/Osram

18 W 15 pcs.

36 W 12 pcs.
58 W 10 pcs.

Dimmable electronic ballast

18 W 13 pcs.
36 W 11 pcs.
58 W 8 pcs.

HQL / HQI

Minimum load max. 250 W at a compensation of 21µF

2.5 V A at 230 V

Control outputs

Control voltage 1 – 10 V (electronically controlled resistor)

Nominal current max. 50 mA of the connected electronic ballast

Switching loads per output:

<table>
<thead>
<tr>
<th>EIB V-02SD</th>
<th>83.020.0213.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIB V-02SD 1PH</td>
<td>83.020.0213.2</td>
</tr>
</tbody>
</table>

Switching load 8 pcs. (max. capacity 35µF)

Control outputs

Switching voltage 230 V

Nominal current 16 A ohmic load

Switching load max. 35µF at 230 V
Technical data

gesis EIB V-0/4B 83.020.0225.0
gesis EIB V-0/4B 1PH 83.020.0225.2
gesis EIB V-56/4 (RC) 83.020.0220.0

- **Switching voltage**: 230 V
- **Nominal current**: 16 A
- **Indicator load**: max. 2700 W
- **Fluorescent lamps**:
 - **uncompensated**: 58 W, 28 pcs.
 - **compensated**: 58 W, 15 pcs (capacity 15 x 4.7 µF)

 - Electronic ballast from Siemens/Osram
 - 18 W, 30 pcs.
 - 36 W, 20 pcs.
 - 58 W, 17 pcs.

- **HQL / HQI**: max. 600 W at a compensation of 70 µF

Accessories

RM

Part No. Std. Pack

- **Mounting dimensions for all devices in series**
 - **Installation height including mounting plate (if required)**:
 - TH35-7.5 accord. to DIN 60715 = approx. 53 mm
 - TH35-15 accord. to DIN 60715 = approx. 61 mm
Accessories *gesis*® RM

<table>
<thead>
<tr>
<th>ETS product database</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>00.000.0066.1</td>
<td>1</td>
</tr>
<tr>
<td>www.gesis.com</td>
<td></td>
</tr>
</tbody>
</table>

The current Wieland product database is available for download or on data carrier on request.
Floppy disk
or for download from the Internet

Mounting dimensions for all devices in series *gesis*® RM

Dimensions in mm

![Diagram showing mounting dimensions](image)

Installation height including mounting plate (if required):

TH35-75 accord. to DIN 60715 = approx. 53 mm
TH35-15 accord. to DIN 60715 = approx. 61 mm
Brief description of the device combination gesis® EIB RM-BAS and gesis® RM expansion modules

The devices of series gesis® RM provide protection degree IP00. For this reason they must be installed in a gesis® RAN (distribution box with pluggable connections from the gesis® CON connector series) or a similar housing.

As the expansion modules can be selected from the gesis® RM device range only with the restriction being a maximum of four expansion modules, the arrangement can be simply adapted to the requirements of various systems. Binary inputs 8-fold, switching outputs 4-fold, window treatment outputs 2-fold, switching/dimming outputs 2-fold, semiconductor outputs 4-fold and window treatment outputs 2-fold for 24V DC applications are available as expansion modules. Power supply unit gesis® RM PS is required to operate a base module with attached expansion modules.

Despite the maximum expansion level with, for example, 32 inputs and the flexibility of the module block with its selectable configuration, the entire arrangement only occupies one physical address within EIB. It is managed by the base module just like the entire application program.

The expansion modules’ functionalities are defined through parameter settings in the base module. As the relevant parameter sets are quite extensive, almost all requirements can be fulfilled. For example, the window treatment outputs for 230V motors all include the option for positioning the shading height and slat angle. Each output has its own complete parameter set, which can be set independently of all the others. With a maximum number of 114 group addresses and 114 assignments, which are managed in a dynamic memory with a maximum of 228 inputs, the system’s limits are rarely approached.

The device arrangement fulfills both the KNX and the EIB requirements and can be loaded with ETS version ETS2 V1.1 and higher.

Application program

The application program is loaded from the PC via EIB into the base module by using ETS. The parameter settings, module addresses and the assigned group addresses are managed in the base module. The expansion modules are driven by the base module or transfer their status into the bus system via the base module. The expansion modules must be connected to the relevant slots of the base module according to the software settings, so that the entire arrangement works properly.

It is not necessary to set the module addresses on the expansion modules.

Physical address – module address

The module addresses are independent of the base module’s physical address. They can be regarded as additional sub-addresses, but are not relevant within the topology of the bus system and cannot be configured there. Although the expansion modules can be created in ETS for device documentation purposes, they do not have their own physical address.

The entire module block is held in the system as one single physical address, independent of the number of expansion modules attached.

Module addresses – expansion modules

A base module can manage a maximum of four expansion modules.

The expansion modules are connected to the relevant slot of the base module according to the module address set in the software. Additional settings for the device arrangement are not required.
Functionality of gesi® RM:
All functions are configured in the base module.

<table>
<thead>
<tr>
<th>Type</th>
<th>Part No.</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesi® EIB RM-BAS</td>
<td>83.020.0400.0</td>
<td>Management of max. 4 expansion modules</td>
</tr>
<tr>
<td>gesi® RM-PS</td>
<td>83.020.0401.0</td>
<td>Power supply for one base module including four expansion modules</td>
</tr>
<tr>
<td>gesi® RM-8/0</td>
<td>83.020.0402.0</td>
<td>5.1 to 5.7</td>
</tr>
<tr>
<td>gesi® RM-0/4</td>
<td>83.020.0403.0</td>
<td>1.1; 1.2; 1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.1 to 2.5</td>
</tr>
<tr>
<td>gesi® RM-0/2W SI</td>
<td>83.020.0404.0</td>
<td>1.1; 1.2; 1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1 to 3.15</td>
</tr>
<tr>
<td>gesi® RM-0/2SD</td>
<td>83.020.0405.0</td>
<td>1.1; 1.2; 1.3; 1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1 to 4.6</td>
</tr>
<tr>
<td>gesi® RM-0/4 HL</td>
<td>83.020.0406.0</td>
<td>1.1; 1.2; 1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.1 to 2.5</td>
</tr>
<tr>
<td>gesi® RM-0/2W DC</td>
<td>83.020.0407.0</td>
<td>1.1; 1.2; 1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1; 3.2; 3.3; 3.4,3.5; 3.11; 3.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.6; 3.8; 3.9; 3.10; 3.13; 3.14; 3.15)*</td>
</tr>
</tbody>
</table>

(*) Due to the highly load-dependent travel times of the connected DC drives, the resulting positioning is not always satisfactory in all applications. If the function is used nevertheless, it should be tested in advance in a sample configuration.

The following functions/parameters can be set via software:

1. General functions
 1.1 Response to bus voltage drop
 1.2 Response to bus voltage recovery
 1.3 Scenario control
 1.4 Disable function
2. Switching functions
 2.1 ON delay
 2.2 OFF delay
 2.3 Stairwell function
 2.4 Status report automatically or on request
 2.5 Break contact or make contact operation selectable
3. Window treatment functions
 3.1 Response to alarm
 3.2 Response after termination of an alarm
 3.3 Monitoring time setting
 3.4 Setting the – travel time – window-blind slats
 – reverse break – security position
 – reverse the direction of rotation
 3.5 Fanning after a Down command
 3.6 Positioning of the shading height and the slat angle
 3.7 Automatic travel time recognition
 3.8 Travel time input via parameters
 3.9 Setting the slat adjustment time (multiple steps)
 3.10 Number of slat steps
 3.11 Use as rolling actuator (no step command)
 3.12 Use as motor actuator (continuous operation)
 3.13 Status feedback of the positions automatically or on request
 3.14 Setting the value range for the shading height
 3.15 Memory function of the slat angle after a travel command
4. Dimming functions
 4.1 Setting the control voltage limits
 4.2 Setting the dimming time
 4.3 ON/OFF settable via dimming function
 4.4 Dimming response after receipt of a value telegram
 4.5 Controllable lighting value on switch-on
 4.6 Status feedback of the switching or dimming status
 automatically or on request
5. Input functions
 5.1 Evaluation of the inputs as:
 – Switch operation
 – Window treatment switch
 – Dimming switch
 – Switch used to send values
 – Switching edges
 5.2 Interpretation of short and long switch operation
 5.3 Defined ON, OFF or toggle
 5.4 Inversion of the pin assignment (in pairs)
 5.5 Reaction to switching edge with ON, OFF, or toggle telegrams
 5.6 Automatically send or suppress start values
 5.7 Cyclic transmission
Technical data

Switching loads per output:

gesis RM-0/4
- Switching voltage: 230 V
- Nominal current: 16 A ohmic load
- Filament lamp load: max. 2700 W
- Fluorescent lamps:
 - uncompensated: 58 W, 28 pcs.
 - compensated:
 - 58 W: 15 pcs (capacity 15 x 4.7 µF)
 - Electronic ballast from Siemens/Osram:
 - 18 W: 30 pcs.
 - 36 W: 20 pcs.
 - 58 W: 17 pcs.
- HQL / HQI: max. 600 W at a compensation of 70 µF

gesis RM-0/2W Si
- Switching voltage: 230 V
- Nominal current: 8 A ohmic load
- Switching load: 575 V A / at 230 V and cos ϕ = 0.4

gesis RM-0/2SD
- Switching voltage: 230 V
- Nominal current: 16 A ohmic load
- Fluorescent lamps:
 - dimmable electronic ballast:
 - 18 W: 21 pcs.
 - 36 W: 16 pcs.
 - 58 W: 13 pcs.
- Control voltage: 1 – 10 V (electronically controlled resistor)
- Nominal current: max. 50 mA of the connected electronic ballast

gesis RM-0/4 (HL)
- Switching voltage: 12 – 230 V AC/DC
- Nominal current: 0.5 A

gesis RM-0/2W DC
- Switching voltage: 6 – 24 V DC
- Nominal current: 5 A as total current of both outputs
Mounting set

DIN rail with integrated mounting clip, two end clamps and cable connector
Length: 500 mm

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Std. Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.002.9999.9</td>
<td>5</td>
</tr>
</tbody>
</table>

ETS Product database

You can receive the Wieland product database on floppy, or by downloading it from the internet

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Std. Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>00.000.0066.1</td>
<td>1</td>
</tr>
<tr>
<td>www.gesis.com</td>
<td></td>
</tr>
</tbody>
</table>

Mounting dimensions gesis® EIB M2

Dimensions in mm

- Min. 510
- 25
- 225
- 500
- 225
- 25

![Mounting position for the base module](image_url)
Brief description of device series

gesis® EIB M2

Modular device series **gesis® EIB M2** is designed for surface mounting in suspended ceilings or raised floors. The functionality of a device arrangement does not have to be defined in advance, but can be assembled modularly to the requirements of the system consisting of window treatment switches, binary inputs and switching/dimming actuators. A module block consisting of one base module and a maximum of six expansion modules represents one physical address on the bus.

The connection cables to and from the modules have a pluggable design. The connectors, cable assemblies and the accessories are taken from the **gesis® CON** connector system. By combining the modular EIB devices **gesis® EIB M2** and the connector system **gesis® CON** a maximum of flexibility can be achieved for the electrical installation in the shortest installation time.

Depending on the arrangement of the modules, window treatments, lighting groups or other consumer devices can be controlled via the EIB. By using input modules you can query potential-free contacts and report their status to the EIB. The required voltages are provided both on the outputs and on the inputs.

The modules are supplied power via connectors on the base module. The mains connections N, PE, L1, L2 and L3 are transferred from module to module. Access to EIB is provided by the base module, in which the bus interface is integrated. A module-internal bus, which is independent of the EIB, is used for communication between the modules. When the modules are plugged together, the power supply and the module-internal bus are transferred automatically from module to module.

Application program

The application program is loaded from the PC via EIB into the base module by using ETS. The parameter settings, module addresses and the assigned group addresses are managed in the base module. The expansion modules are contacted via the module-internal bus or use it to transfer their information to the base module. The module addresses must be set in the expansion modules in order to ensure that data transfer within the modules functions properly. The type of expansion module and the corresponding parameters are assigned to these module addresses in the application program.

A detailed description of all functions is available in the application program description of the individual modules.

Higher-level functions of the base module

The base module manages the parameters of all the connected expansion modules. Furthermore, a disable object and a security/alarm object are available as well. These objects are not assigned to any specific modules, but are evaluated in the relevant modules as required.

Module address – physical address

The module addresses are independent of the base module’s physical address. They can be regarded as additional sub-addresses. The module addresses, however, are available internally and in the ETS only through the parameter settings and objects.

The entire module block is held in the system as one single physical address, independent of the number of expansion modules attached.

Module addresses

The base module can manage a maximum of six module addresses.

The module addresses are set on the expansion modules by using a rotary switch. The module addresses of the expansion modules can be selected from 1 through 6, with the order being irrelevant. If module address 0, 7, 8 or 9 is set, the module will not be contacted and will not be included in module diagnostics. Each module address can be assigned only once. If the module address set on the expansion module does not match the address parameterized in the software, an error is displayed on the base module.
Functionality of gesis EIB M2:

<table>
<thead>
<tr>
<th>Type</th>
<th>Part No.</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesis</td>
<td>83.020.1020.0</td>
<td>Management of max. 6 expansion modules.</td>
</tr>
<tr>
<td>gesis</td>
<td>83.020.1021.0</td>
<td>1.3; 5.1 to 5.7</td>
</tr>
<tr>
<td>gesis</td>
<td>83.020.1022.0</td>
<td>1.3; 5.1 to 5.7</td>
</tr>
<tr>
<td>gesis</td>
<td>83.020.1023.0</td>
<td>1.1; 1.2; 1.3; 2.1; 2.2; 2.3</td>
</tr>
<tr>
<td>gesis</td>
<td>83.020.1024.0</td>
<td>1.1; 1.3; 3.1 to 3.4</td>
</tr>
<tr>
<td>gesis</td>
<td>83.020.1025.0</td>
<td>1.1; 1.2; 1.3; 4.1 to 4.5</td>
</tr>
<tr>
<td>gesis</td>
<td>83.020.1026.0</td>
<td>1.1; 1.2; 1.3; 2.1; 2.2; 2.3</td>
</tr>
</tbody>
</table>

The following functions/parameters can be set via software:

1. General functions
 1.1 Response to bus voltage drop
 (supply voltage still available)
 1.2 Response to bus voltage recovery
 (bus and supply voltage)
 1.3 Disable function

2. Switching functions
 2.1 ON delay
 2.2 OFF delay
 2.3 Stairwell function

3. Window treatment functions
 3.1 Response to alarm
 3.2 Setting the monitoring time
 3.3 Setting the – travel time – window-blind slats
 – reverse break – security position
 – reverse the direction of rotation
 3.4 Fanning after a Down command

4. Dimming functions
 4.1 Setting the control voltage limits
 4.2 Setting the dimming time
 4.3 ON/OFF settable via dimming function
 4.4 Dimming response after receipt of a value telegram
 4.5 Controllable amount of light on switch-on

5. Input functions
 5.1 Evaluation of the inputs as:
 – Switch operation
 – Window treatment switch
 – Dimming switch
 – Switching edges
 5.2 Interpretation of short and long switch operation
 5.3 Defined ON, OFF or toggle
 5.4 Inversion of the pin assignment (in pairs)
 5.5 Reaction to switching edge with ON, OFF, or toggle telegrams
 5.6 Automatically send or suppress start values
 5.7 Cyclic transmission
Technical data

Switching loads per output:

gesis EIB M2-0/2

Switching voltage: 230 V
Nominal current: 16 A

gesis EIB M2-0/1Wx2

Switching voltage: 230 V
Nominal current: 8 A

gesis EIB M2-0/1SD

Switching voltage: 230 V
Nominal current: 16 A
Control voltage: 1 – 10 V (electronically controlled resistor)
Nominal current max. 50 mA of the connected electronic ballast

gesis EIB M2-0/2B

Switching voltage: 230 V
Nominal current: 16 A
Accessories *gesis*® LON R

Mounting dimensions *gesis*® LON R

Dimensions in mm

![Diagram of mounting dimensions](image)

- **X = 105 mm** for *gesis* LON R-16/8 (24) 83.020.0310.0
- **X = 70 mm** for *gesis* LON R-8/4 (24) 83.020.0311.0
- **X = 105 mm** for *gesis* LON R-0/8 83.020.0312.0

Installation height for all *gesis* LON R modules including mounting rail, if required.
- TH35-75 accord. to DIN 60715 = approx. 53 mm
- TH35-15 accord. to DIN 60715 = approx. 61 mm

Accessories *gesis*® LON R

<table>
<thead>
<tr>
<th>Master CD-ROM</th>
<th>LON Master CD with all necessary data for start-up of the gesis LON R products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part No. 00.000.0069.8</td>
<td>1</td>
</tr>
<tr>
<td>Std. Pack www.gesis.com</td>
<td>CD-ROM</td>
</tr>
<tr>
<td>Available for download from the download section of the gesis website on the Internet</td>
<td></td>
</tr>
</tbody>
</table>
General information on the devices

The devices of the gesis LON R series are designed according to LON Mark and can be integrated into standard LON networks. The software provided (see master CD-ROM) enables the programming of the devices and their integration into a LON network via conventional LON Binding Tools. The devices can be mounted on a DIN rail and have been designed for installation in a gesis RAN or a similar housing. The gesis RAN distribution boxes are designed according to customer requirements, manufactured including internal wiring and delivered after full testing.

Operating and monitoring elements:
The operating elements are positioned on the right side of the devices behind gray fields; they can be operated by using a magnet (from a magnetic pin wall, for example). The following magnetic switches are available.

“Reset magnet”: Used to reset the device.
“Service magnet”: When operated, the Neuron ID of the device is transmitted to the network.

Definition of the LED states:

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset</td>
<td>red</td>
<td>OFF:</td>
<td>Normal operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON:</td>
<td>Reset activated</td>
</tr>
<tr>
<td>Run</td>
<td>green</td>
<td>flashing:</td>
<td>Application running (normal operation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF:</td>
<td>Application in stop</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON:</td>
<td>Application in stop</td>
</tr>
<tr>
<td>Service</td>
<td>yellow</td>
<td>OFF:</td>
<td>Normal operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON:</td>
<td>No application loaded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>flashing:</td>
<td>Not installed in the network</td>
</tr>
</tbody>
</table>

Software variety:
Each of the three devices can be operated with one of three different applications, depending on the requirements. The applications support switching applications, window treatment controls and scenario controls.
Technical data

Functionality *gesis* LON R:

Settable functions/parameters:

<table>
<thead>
<tr>
<th>Type</th>
<th>Part. No.</th>
<th>Application “Direct”</th>
<th>Application “Scene”</th>
<th>Application “Sunblind”</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesis LON R-16/8</td>
<td>83.020.0310.0</td>
<td>1, 2, 3</td>
<td>1, 2, 4</td>
<td>1, 2, 5, 6, 7, 8</td>
</tr>
<tr>
<td>gesis LON R-8/4</td>
<td>83.020.0311.0</td>
<td>1, 2, 3</td>
<td>1, 2, 4</td>
<td>1, 2, 5, 6, 7, 8</td>
</tr>
<tr>
<td>gesis LON R-0/8</td>
<td>83.020.0312.0</td>
<td>1, 3</td>
<td>1, 4</td>
<td>1, 6, 7</td>
</tr>
</tbody>
</table>

1. Function block “Node object”
 1.1 Installation location (text field)
2. Function block “Switch object”
 2.1 Switch/sensor
 2.2 Make/break contact (when defined as switch, the break contact activates the transmission at a falling signal edge)
 2.3 Heartbeat time (defines when to send the variable, even when the value has not changed)
3. Function block “Actuator object”
 3.1 Break/make contact
 3.2 Heartbeat time (defines when to send the variable, even when the value has not changed)
4. Function block “Light controller”
 4.1 Monitoring time (for each input)
 4.2 Preferred OFF position (only effective when a monitoring time is indicated)
 4.3 OFF delay (for each output)
 4.4 Manual overwrite time (for each input)
 4.5 Heartbeat time for each output (repeat time, even when the status has not changed)
 4.6 Inversion (for each output)
 4.7 Scenario parameters
 4.7.1 ON/OFF/unchanged (for each output)
5. Function block “Sunblind setting”
 5.1 Slat step
 5.2 Jog time
 5.3 Modal time (if the switch is pressed for a longer time, the window blind travels to Up or Down end position)
 5.4 Heartbeat (repeat time for transmission telegram, even when the status has not changed)
6. Function block “Sunblind Controller”
 6.1 Function (text field)
 6.2 Angle at incremental mode
 6.3 Local interlock time
 6.4 Timeout
7. Function block “Sunblind actuator”
 7.1 Function (text field)
 7.2 Smallest slat angle
 7.3 Largest slat angle
 7.4 Window blind travel time
 7.5 Switch-over time on change of rotation
 7.6 Inversion of Up/Down outputs
8. Function block “Maintenance”
 8.1 Inversion of input for jog mode Up
 8.2 Inversion of input for jog mode Down
 8.3 Inversion of input for activation
Technical data

Information on the individual devices:

gesis LON R 16/8 (24)

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
<th>Maximum switching power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supply voltage:
- LON connection: 2-fold, internally bridged
- Connection technology: Spring-loaded terminals

<table>
<thead>
<tr>
<th>Wire range</th>
<th>Available applications:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solid</td>
<td>Direct</td>
</tr>
<tr>
<td>fine-stranded</td>
<td>Scenario</td>
</tr>
<tr>
<td></td>
<td>Window treatment</td>
</tr>
</tbody>
</table>

Available objects:
- Direct
- Scenario
- Window treatment

gesis LON R 8/4 (24)

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
<th>Maximum switching power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supply voltage:
- LON connection: 2-fold, internally bridged
- Connection technology: Spring-loaded terminals

<table>
<thead>
<tr>
<th>Wire range</th>
<th>Available applications:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solid</td>
<td>Direct</td>
</tr>
<tr>
<td>fine-stranded</td>
<td>Scenario</td>
</tr>
<tr>
<td></td>
<td>Window treatment</td>
</tr>
</tbody>
</table>

Available objects:
- Direct
- Scenario
- Window treatment

gesis LON R 0/8

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Maximum switching power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supply voltage:
- LON connection: 2-fold, internally bridged
- Connection technology: Spring-loaded terminals

<table>
<thead>
<tr>
<th>Wire range</th>
<th>Available applications:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solid</td>
<td>Direct</td>
</tr>
<tr>
<td>fine-stranded</td>
<td>Scenario</td>
</tr>
<tr>
<td></td>
<td>Window treatment</td>
</tr>
</tbody>
</table>

Available objects:
- Direct
- Scenario
- Window treatment

Switching loads per output:

gesis LON R 16/8 (24)

<table>
<thead>
<tr>
<th>Switching voltage</th>
<th>Nominal current</th>
</tr>
</thead>
<tbody>
<tr>
<td>240 V</td>
<td>16 A</td>
</tr>
</tbody>
</table>

gesis LON R 8/4 (24)

<table>
<thead>
<tr>
<th>Switching voltage</th>
<th>Nominal current</th>
</tr>
</thead>
<tbody>
<tr>
<td>240 V</td>
<td>16 A</td>
</tr>
</tbody>
</table>

gesis LON R 0/8

<table>
<thead>
<tr>
<th>Switching voltage</th>
<th>Nominal current</th>
</tr>
</thead>
<tbody>
<tr>
<td>230 V</td>
<td>16 A</td>
</tr>
</tbody>
</table>
Technical data

Rated voltage: 250 V, 600 V (UL)
Rated current: 20 A
Number of poles: 3 pole (L, N, ground)
Regulations: DIN VDE 0606 T200; VDE 0110
IEC 60999; UL 2238; CSA: C22.2 No.182.2-M1987;
LR Type Approval System pending
Approvals: VDE; UL; CSA; LR; GL; DNV
Type of protection: IP 65, IP 66, IP 67 and IP 68
(3 m; 2 hours)
Double connection being prepared
Cable assemblies: Crimp technology, H05VV-F or H07RN-F
Conductor cross section: 1.5 mm² and 2.5 mm
Cable with free end:
Sheath strip length 35 mm,
Insulation strip length 9 mm,
ultrasonically welded
Locking device: Open by using a tool:
Press the screwdriver blade into the opening of the locking device and turn 90°.
Material: Contact material:
Brass, surface-plated
Housing:
Thermoplastic PA 66, halogen-free, V2
Sealing material:
NBR
Continuous temperature: H05VV 70° C, cable
H07RN-F 60° C

Ambient operating

Insulation strip lengths and ferrules
all lengths in mm

Screw connection:

Conductor cross section	0.75 mm²	1.0 mm²	1.5 mm²	2.5 mm²	4 mm²	AWG 12–18
solid | B | B | B | B | B | −
fine-stranded | B | B | B | B | B | −
stranded | B | B | B | B | B | B
ultrasonically welded | B | B | B | B | B | −

Spring connection:

Conductor cross section	0.5 mm²	0.75 mm²	1 mm²	1.5 mm²	2.5 mm²
solid | 14.5 + 1 | 14.5 + 1 | 14.5 + 1 | 14.5 + 1 | 14.5 + 1
fine-stranded | 12.0 + 1 | 13.0 + 1 | 13.0 + 1 | 13.0 + 1 | 13.0 + 1
Ferrule accord. to DIN | 46228-E0,5-10 | 46228-E0,75-12 | 46228-E1,0-12 | 46228-E1,5-12
stranded | 13.0 + 1 | 13.0 + 1 | 13.0 + 1 | 13.0 + 1 | 13.0 + 1
Ferrule accord. to DIN | 46228-E0,75-12 | 46228-E1,0-12 | 46228-E1,5-12 | 46228-E1,5-12
ultrasonically welded | 14.5 + 1 | 14.5 + 1 | 14.5 + 1 | 14.5 + 1 | 14.5 + 1

Glow-wire test 960° C: For connectors, distribution units, cable assemblies and appliance couplers
Coding: Mechanical coding symbolized by color code gray and black with the same mechanical coding. Other codings are optional.

Note: Protection against shock generally guaranteed even when disconnected.
Ground conductor leading. Connection to the live cable must be with a female connector according to the regulations. It is therefore not possible to have a ring circuit arrangement. Only pluggable in the correct pole configuration; 1 pole cannot be connected. Contacts protected against strain on the cable. All components can be interlocked. DIN VDE 0606-200 requires the use of a locking device. Dangerous mismating with installation connector systems of other suppliers is not automatically excluded by compliance with DIN VDE 0606 T200. Installation connectors do not replace national connector/outlet systems for home applications.
In many applications, electrical devices and systems must work safely for many years under difficult environmental conditions. For a reliable function, water or foreign particles (such as dust, oil, soot) ingress into production systems, parking garages or outer premises must be avoided.

The requirements for IP protection vary from application to application and must be defined accordingly by the user.

For protection degree IP 68, the secondary conditions must be explicitly listed by the manufacturer (at least 1.50 m and 30 minutes). In this case, manufacturer and user have to agree on the conditions.

Material resistance for PA 66 (housing) and NBR (sealing)

Please contact us for applications under different conditions.

UV light (use black-colored connectors)	Motor oil (SAE 20W/55)
Resistance to oil and grease	Nickel chloride
Aliphatic carbon hydrides	Paraffin and paraffin derivates
Aromatic carbon hydrides	Phosphoric ester
Alcohol	Phenolic ester
Ammonia, water-free	Polyamide resin
Ammonium chloride (salmiac)	Polyester polyoles
Ammonium sulfate	Polyether polyoles
Barium chloride	Polyglycols
Beer	Polymeric softeners
Butter	Polyurethane resins
Butyl alcohol	Mercury
Calcium chloride, hydrous solution, 10%	Castor oil
Citric acid, hydrous solution, 10%	Salmiac
Ferric sulfide	Oxygen, RT
Ethyl ether	Lubricating oil (O-149), (not bunker fuel, oil tanker)
Pant, vanilsh, not much sulfuric acid	Sulfur, wet
Fruit juice, fruit acid	Sulfuric acid (verd, RT)
Tannic acid	Sulfur hexafluoride
Glycerin	Oil
Glycol, hydroxide solution, 40%	Sebacic acid ester
Potassium chloride	Spirit
Caustic potash solution, hydroxide solution, 10%	Nitric acid (10%)
Sodium, hydroxide solution, 10%	Hydrochloric acid (10%)
Lignin oil	Water, RT, free from chlorine up to 80°C
Milk	Water: salt water resistance, artificial, 20°C
Lactic acid, 20°C	Stannic chloride, 20°C, saturated
Installation instructions

Easy mounting: installation in a housing

Note: Protection against twisting can only be guaranteed when the lower tolerance limit is ensured for the diameter of the mounting hole.

Mounting of a modular system for M20 feed-through

Dimensions in mm

Mounting of a standard system for M20 feed-through

Dimensions in mm
Easy handling

Connect the wire ... and disconnect it

Close ... and open

Latch ... and unlatch

Technical data

Materials:
- Metal parts: Special alloys maintain low feed-through resistance and provide a gas-tight contact area:
 - Clamping spring: Stainless CrNi steel
 - Conductor bar: Tin-plated copper
- Insulation material: Polyamide has excellent electrical, chemical and mechanical characteristics
- Insulating housings: Polyamide 666
- Creepage resistance: CTI 600
- Flammability class: UL 94-V0

for TS 35 providing – all necessary accessories – marking systems – approvals – software tools – DQS certification
Technical data

Materials:

Metal parts: Special alloys maintain low feed-through resistance and provide a gas-tight contact area:
- Clamping spring: Stainless CrNi steel
- Conductor bar: Tin-plated copper

Insulation material: Polyamide has excellent electrical, chemical and mechanical characteristics
- Insulating housings: Polyamide 666
- Creepage resistance: CTI 600
- Flammability class: UL 94-V0

fasis for TS 35 providing
- all necessary accessories
- marking systems
- approvals
- software tools
- DQS certification
Technical data

Materials:

Metal parts: Special alloys maintain low feed-through resistance and provide a gas-tight contact area:
- Clamping spring:
- Clamping body:
- Terminal screws: Steel, zinc-plated and dichromated
- Conductor bar: Tin-plated copper

Insulation material: Polyamide has excellent electrical, chemical and mechanical characteristics
- Insulating housings: Polyamide 666
- Creepage resistance: CTI 600
- Flammability class: UL 94-V0

General: The requirements for power and signal management in electrical distribution systems increase correspondingly with the increasing automation of convenience and safety functions in buildings. The growing number of circuits requires a terminal block system that enables clear wiring in confined spaces without having to limit functionality. We fulfill this task with our product series *fasis* BIT that is designed according to the connectivity directives for distribution systems in public and functional buildings:

Note:

The directives for the setup of high-voltage systems according to EN 60364 (VDE 100) requires an insulation test of all outgoing cables without disconnect.

Consumer units for built-in equipment up to 63A according to DIN 43871.

The information regarding cross sectional area and connection types pertains to unprepared wires without ferrules. Ferrules are not required for safe terminations.

The voltage ratings apply to the terminals in their intended application. When different products are mounted adjacent to each other, the proper isolation distances must be adhered to,

If the ground blocks of the *fasis* product family are not used in block assemblies, but are mounted to the rail as single terminal blocks, end brackets have to be used.

A detailed description of technical data, the standards’ requirements, and the application conditions are available under **facts & DATA** in our AT catalog.

In general, all Wieland components, which are subject to **CE** marking, are marked with the **CE** symbol.
Overview of mains types

TN mains types

Fig. 1: TN mains in principle
Source: DIN VDE 0100 Part 410

Fig. 2: TN-C network with overcurrent protection
Source: DIN VDE 0100 Part 410
(old term for the protection measure: TN system)
Neutral conductor and protective function in the entire network combined in a single conductor, the PEN conductor.

Fig. 3: TN-C-S network with overcurrent protection
Source: DIN VDE 0100 Part 410
(old term for the protection measure: TN system)
Neutral conductor and protective function in the entire network combined in a single conductor, the PEN conductor.

Fig. 4: TN-C-S network with residual current operated device
Source: DIN VDE 0100 Part 410
(old term for the protection measure: rapid TN system)
Neutral conductor and protective function in the entire network combined in a single conductor, the PEN conductor.
TN mains types

Neutral conductor and protective function separated throughout the network.

Fig. 5: TN-S network with overcurrent protection
Source: DIN VDE 0100 Part 410
(old term for the protection measure: TN system)

TT mains types

Fig. 1: TT mains
Source: DIN VDE 0100 Part 410

Fig. 2: TT network with overcurrent protection
Source: DIN VDE 0100 Part 410
(old term for the protection measure: protective ground)

Fig. 3: TT network with residual current operated device
Source: DIN VDE 0100 Part 410 (old term for the protection measure: protective ground)
Frequently asked questions

Can I wire a functional building completely with gesis?
Yes. All the functions of the electrical installation can be implemented from the sub-distribution panels onwards, for example device connection, distribution box, switch connection, connection of socket-outlets, three-phase a.c.
wiring, wiring of installation bus.

Are there distribution units available with a gesis connection?
Yes. We stock both the sub-distribution panels gesis RAN which are manufactured to your specifications and the Wieland distribution panels WIV which have been designed specifically for trade show exhibit construction.

What are the prerequisites for installing gesis?
gesis can be installed wherever there is sufficient space for connectors and cables, for example in suspended ceilings, wire ducts, raised floors or wall racks - in short in any cavity.

I would like to install a second circuit, for example to supply the computer.
Is this possible with gesis connectors?
Yes. A continuous and clear separation of the supply systems can be achieved using the mechanically coded gesis connectors.

Can a bus installation be made connectable with gesis?
Yes, by using our gesis EiS components!

Can gesis also be used for heavy current up to 20 A?
Yes, the gesis connectors are available in a modified form on request for countries with 20 A applications such as Australia and Japan.

Does the connection of permanently wired conductors (NYM) using connectors comply with VDE regulations (initial connection with NYM)?
This application is not excluded in any of the relevant VDE regulations. Several points must however be taken into account:
- The connecting points of cables that are not permanently wired must be relieved of tension and transverse force (strain relief and locking device).
- The supply cable (NYM) must be protected against excessive bending stress by fixing the cable or plug appropriately during the installation.
- It must be ensured that the plugs are only used in installations with a maximum load of 16 A.

It has never been in doubt that a Wieland Electric connector meets higher standards regarding safety requirements than the conventional connection with a standard European terminal (lamp-wire connector). The installation of gesis in all buildings has been completed without any problems from the governing bodies of TÜV and LGA.

What must be taken into account when the cables are bundled?
When the cables are bundled, the permitted current carrying capacity must be reduced (compared to DIN VDE 0298 section 4). This can be the case for example in cable trunking, cable trays or racks as well as in walls with heat insulation. An increase in the cable cross section (e.g. from 1.5 mm² to 2.5 mm²) raises the permitted current carrying capacity.
Which technical conditions apply for three-phase and a.c. distribution panels?
Three-phase and a.c. distribution panels may be fused with a maximum of 16 A per external conductor. A three-phase protective device should be used so that all 3 fuses can be protected against short circuits if one phase fails. Alternatively, each phase can be individually fused and a separate master switch should be installed for all three phases so that the complete circuit can be disconnected to carry out repairs.

Which VDE approval refers to the use of connectors in installation technology?

VDE 0628
This norm with VDE approval applies to two pole and multipole connectors with a grounding contact, a nominal voltage of AC 250 V and AC 400/230 V as well as a nominal current of 16 A. These devices should be connected in installation systems e.g. in pre-assembled houses, furniture, cavities such as false floors, suspended ceilings etc. A prerequisite is that the ambient temperature should normally not exceed 25 °C but can occasionally reach 35 °C.

Which VDE approval applies for installation connectors used for permanent connections in fixed installations?

VDE 0606-200 as well as VDE 0606-200/A1
The application range of the current standard applies for 2 to 5 pole installation connectors with or without protective contact. The maximum rated voltage is 500 V AC, the maximum rated connection range 10 mm² for permanent connection in indoor installation systems according to IEC 60364.
Installation connectors provide a locking device and are designed for load-free connection and disconnect.

Which VDE approval refers to the use of flexible conductors?

VDE 0100 section 520 (chapter 5.3 “Application of flexible cables”)
The following must be connected with flexible cables:
- portable equipment
- stationary equipment whose location must be changed temporarily
These cables must be connected via male and female connectors (e.g. GST 18) or terminals in fixed housing.

VDE 0298 section 3 “Use of cables and insulated cables”
The use of flexible conductors in commercial buildings is permitted, in a similar way to workshops. Applications in false floors, false ceilings, wire ducts etc. within a building can be compared with the external conditions of a workshop.

VDE statement: The use of flexible conductors is permitted in all types of cavities.
Frequently asked questions

What should be noted when connecting permanently wired conductors (NYM) using connectors (initial connection with NYM)?

Statement from TÜV, South West

“The intended application has not been excluded in any of the relevant VDE regulations which incorporate the setup of power installations or the requirements for cable, plug-in connections, male and female connectors or socket-outlets. Several points must however be taken into account:

- The connecting points of cables that are not permanently wired must be relieved of tension and transverse force (strain relief and locking device).
- The supply cable (NYM) must be protected against excessive bending stress by fixing the cable or male connector appropriately during the installation.
- It must be ensured that the male connector are only used in installations with a maximum load of 16 A.”

VDE 0628

Area of application: Connectors for installation technology

“Connectors with detachable connections are tested with the following cables. H05VV-F, NYM (cross section 1.5 mm² and 2.5 mm²)”

It can be concluded that cable types that are used for this test are also suitable for the practical application.

Latest technology

Connection of a luminaire with flexible conductors to an NYM cable which is suspended from the ceiling. The connection is normally established with a European standard terminal (lamp-wire connector). It has never been in doubt that a Wieland Electric connector meets higher standards as regards safety requirements (strain relief, locking device, reliability of concealment, …). Previously all buildings have been installed without any problems from the TÜV, LGA etc.

Are there specific technical conditions for the installation?

Three-phase and a.c. distribution boards

- Max. 16 A fuse per external conductor
- A three-phase protective device should be used so that all 3 fuses can be disconnected if one phase fails or
- Each phase can be individually fused and a separate master switch should be installed for all three phases so that the complete circuit can be disconnected to carry out repairs.

Bundling of cables

When the cables are bundled, the permitted current carrying capacity must be reduced (compared to DIN VDE 0298 section 4).

Example:
- cable trunking
- cable trays, racks
- walls with heat insulation

An increase in the cable cross section (e.g. from 1.5 mm² to 2.5 mm²) raises the permitted current carrying capacity.